L(s) = 1 | + (−0.349 − 0.605i)5-s + (−2.02 − 1.70i)7-s + (0.229 + 0.132i)11-s + 1.31i·13-s + (1.86 − 3.22i)17-s + (−0.382 + 0.220i)19-s + (−4.29 + 2.48i)23-s + (2.25 − 3.90i)25-s − 0.315i·29-s + (4.85 + 2.80i)31-s + (−0.322 + 1.82i)35-s + (−0.351 − 0.608i)37-s − 10.7·41-s − 7.46·43-s + (−3.50 − 6.06i)47-s + ⋯ |
L(s) = 1 | + (−0.156 − 0.270i)5-s + (−0.765 − 0.643i)7-s + (0.0692 + 0.0399i)11-s + 0.364i·13-s + (0.452 − 0.783i)17-s + (−0.0877 + 0.0506i)19-s + (−0.896 + 0.517i)23-s + (0.451 − 0.781i)25-s − 0.0585i·29-s + (0.872 + 0.503i)31-s + (−0.0545 + 0.308i)35-s + (−0.0577 − 0.0999i)37-s − 1.68·41-s − 1.13·43-s + (−0.510 − 0.884i)47-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(−0.998−0.0484i)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)(−0.998−0.0484i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
−0.998−0.0484i
|
Analytic conductor: |
18.1100 |
Root analytic conductor: |
4.25559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(1781,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :1/2), −0.998−0.0484i)
|
Particular Values
L(1) |
≈ |
0.2770495087 |
L(21) |
≈ |
0.2770495087 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.02+1.70i)T |
good | 5 | 1+(0.349+0.605i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.229−0.132i)T+(5.5+9.52i)T2 |
| 13 | 1−1.31iT−13T2 |
| 17 | 1+(−1.86+3.22i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.382−0.220i)T+(9.5−16.4i)T2 |
| 23 | 1+(4.29−2.48i)T+(11.5−19.9i)T2 |
| 29 | 1+0.315iT−29T2 |
| 31 | 1+(−4.85−2.80i)T+(15.5+26.8i)T2 |
| 37 | 1+(0.351+0.608i)T+(−18.5+32.0i)T2 |
| 41 | 1+10.7T+41T2 |
| 43 | 1+7.46T+43T2 |
| 47 | 1+(3.50+6.06i)T+(−23.5+40.7i)T2 |
| 53 | 1+(8.51+4.91i)T+(26.5+45.8i)T2 |
| 59 | 1+(6.73−11.6i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.89+2.82i)T+(30.5−52.8i)T2 |
| 67 | 1+(−2.97+5.14i)T+(−33.5−58.0i)T2 |
| 71 | 1−13.4iT−71T2 |
| 73 | 1+(6.66+3.84i)T+(36.5+63.2i)T2 |
| 79 | 1+(0.698+1.20i)T+(−39.5+68.4i)T2 |
| 83 | 1+7.44T+83T2 |
| 89 | 1+(5.59+9.68i)T+(−44.5+77.0i)T2 |
| 97 | 1−10.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.561062963468646477243181239238, −7.928037408152156253608662848618, −6.92328111557457490109760999533, −6.51684752569964646694671127126, −5.40612610876681326022841785264, −4.56029033904656325496639736596, −3.69342920839541705224518598790, −2.84914232623151886057503416059, −1.45655642677357254312987824763, −0.094193626790269842709552551621,
1.65076353856956981997215056070, 2.89336264234054078179346644177, 3.51079771863332576077975706245, 4.62462427740889495838357186070, 5.61874427509598255526483121131, 6.30934044870222824629979648696, 6.95409313638861955367100380979, 8.081563161601923267526696539833, 8.477124679238609363935821944600, 9.556050121763534863942876667479