L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (−0.258 − 0.448i)11-s + (−0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (0.707 − 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (−1.22 + 0.707i)29-s + (−0.965 − 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (0.448 + 0.258i)44-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (−0.258 − 0.448i)11-s + (−0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (0.707 − 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (−1.22 + 0.707i)29-s + (−0.965 − 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (0.448 + 0.258i)44-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(−0.0871+0.996i)Λ(1−s)
Λ(s)=(=(2268s/2ΓC(s)L(s)(−0.0871+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
−0.0871+0.996i
|
Analytic conductor: |
1.13187 |
Root analytic conductor: |
1.06389 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(1511,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :0), −0.0871+0.996i)
|
Particular Values
L(21) |
≈ |
1.034384052 |
L(21) |
≈ |
1.034384052 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1 |
| 7 | 1+(−0.866+0.5i)T |
good | 5 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(0.258+0.448i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 29 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1−1.73T+T2 |
| 41 | 1+(−0.5−0.866i)T2 |
| 43 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+1.93iT−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 71 | 1−1.93T+T2 |
| 73 | 1−T2 |
| 79 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.050716138574731087306870687636, −8.375309797721427020229224676898, −7.69248255533790781423757528139, −6.90493596845983963406939071769, −5.57054250554653271857398773354, −4.84571140127425227615399944438, −4.03588064868000120881986775735, −3.10619868684909420804412692441, −2.07380927584292872184408146141, −0.929682143265937135147022561357,
1.32470931576504892362420045390, 2.61033707195885073236433122931, 4.10224573903107779714782927856, 4.76889316671184652388922832133, 5.62258129401992267151865755718, 6.19195611297652923253820468572, 7.43948542258157157417132923610, 7.64065635388920878455822876195, 8.579897997055495645616367747640, 9.253076690162030301501300776450