L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (−0.258 − 0.448i)11-s + (−0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (0.707 − 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (−1.22 + 0.707i)29-s + (−0.965 − 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (0.448 + 0.258i)44-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (−0.258 − 0.448i)11-s + (−0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (0.707 − 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (−1.22 + 0.707i)29-s + (−0.965 − 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (0.448 + 0.258i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0871 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0871 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.034384052\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.034384052\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.258 + 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.73T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.93iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - 1.93T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.050716138574731087306870687636, −8.375309797721427020229224676898, −7.69248255533790781423757528139, −6.90493596845983963406939071769, −5.57054250554653271857398773354, −4.84571140127425227615399944438, −4.03588064868000120881986775735, −3.10619868684909420804412692441, −2.07380927584292872184408146141, −0.929682143265937135147022561357,
1.32470931576504892362420045390, 2.61033707195885073236433122931, 4.10224573903107779714782927856, 4.76889316671184652388922832133, 5.62258129401992267151865755718, 6.19195611297652923253820468572, 7.43948542258157157417132923610, 7.64065635388920878455822876195, 8.579897997055495645616367747640, 9.253076690162030301501300776450