L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (0.965 − 1.67i)11-s + (−0.707 − 0.707i)14-s + (0.500 + 0.866i)16-s + (1.36 − 1.36i)22-s + (0.707 + 1.22i)23-s + (0.5 − 0.866i)25-s + (−0.5 − 0.866i)28-s + (1.22 + 0.707i)29-s + (0.258 + 0.965i)32-s − 1.73·37-s + (−0.866 − 0.5i)43-s + (1.67 − 0.965i)44-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (0.965 − 1.67i)11-s + (−0.707 − 0.707i)14-s + (0.500 + 0.866i)16-s + (1.36 − 1.36i)22-s + (0.707 + 1.22i)23-s + (0.5 − 0.866i)25-s + (−0.5 − 0.866i)28-s + (1.22 + 0.707i)29-s + (0.258 + 0.965i)32-s − 1.73·37-s + (−0.866 − 0.5i)43-s + (1.67 − 0.965i)44-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.996−0.0871i)Λ(1−s)
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.996−0.0871i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.996−0.0871i
|
Analytic conductor: |
1.13187 |
Root analytic conductor: |
1.06389 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(755,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :0), 0.996−0.0871i)
|
Particular Values
L(21) |
≈ |
2.141591796 |
L(21) |
≈ |
2.141591796 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965−0.258i)T |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
good | 5 | 1+(−0.5+0.866i)T2 |
| 11 | 1+(−0.965+1.67i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 29 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+1.73T+T2 |
| 41 | 1+(−0.5+0.866i)T2 |
| 43 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1−0.517iT−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 71 | 1+0.517T+T2 |
| 73 | 1−T2 |
| 79 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.941990447451365794792018377674, −8.531276389437033900506937774293, −7.35626057203883836739299039941, −6.72581306841658871676138480784, −6.12551543247300527703718737994, −5.35063748448071755361310606278, −4.30929973643031598907153571091, −3.38703637044892145761383098612, −3.03120966339614864431093644634, −1.30464371774011452369715669469,
1.55844927099671325418970651658, 2.58807203377252978256114020624, 3.44763913704678022493756135255, 4.45024606204535529815417843318, 5.02135961151817535200233376777, 6.11733956866806790981330344645, 6.80540282015095959401857991337, 7.17433497713015317158427177677, 8.540638266932095392567431516315, 9.378943711459767541135123132259