L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (0.965 − 1.67i)11-s + (−0.707 − 0.707i)14-s + (0.500 + 0.866i)16-s + (1.36 − 1.36i)22-s + (0.707 + 1.22i)23-s + (0.5 − 0.866i)25-s + (−0.5 − 0.866i)28-s + (1.22 + 0.707i)29-s + (0.258 + 0.965i)32-s − 1.73·37-s + (−0.866 − 0.5i)43-s + (1.67 − 0.965i)44-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (0.965 − 1.67i)11-s + (−0.707 − 0.707i)14-s + (0.500 + 0.866i)16-s + (1.36 − 1.36i)22-s + (0.707 + 1.22i)23-s + (0.5 − 0.866i)25-s + (−0.5 − 0.866i)28-s + (1.22 + 0.707i)29-s + (0.258 + 0.965i)32-s − 1.73·37-s + (−0.866 − 0.5i)43-s + (1.67 − 0.965i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.141591796\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.141591796\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.73T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - 0.517iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 0.517T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.941990447451365794792018377674, −8.531276389437033900506937774293, −7.35626057203883836739299039941, −6.72581306841658871676138480784, −6.12551543247300527703718737994, −5.35063748448071755361310606278, −4.30929973643031598907153571091, −3.38703637044892145761383098612, −3.03120966339614864431093644634, −1.30464371774011452369715669469,
1.55844927099671325418970651658, 2.58807203377252978256114020624, 3.44763913704678022493756135255, 4.45024606204535529815417843318, 5.02135961151817535200233376777, 6.11733956866806790981330344645, 6.80540282015095959401857991337, 7.17433497713015317158427177677, 8.540638266932095392567431516315, 9.378943711459767541135123132259