L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−0.5 + 0.866i)11-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 2·17-s + 19-s + (0.499 − 0.866i)20-s + (0.499 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 0.999·28-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−0.5 + 0.866i)11-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 2·17-s + 19-s + (0.499 − 0.866i)20-s + (0.499 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 0.999·28-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.342+0.939i)Λ(1−s)
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.342+0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.342+0.939i
|
Analytic conductor: |
1.13187 |
Root analytic conductor: |
1.06389 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(755,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :0), 0.342+0.939i)
|
Particular Values
L(21) |
≈ |
1.671813220 |
L(21) |
≈ |
1.671813220 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1 |
| 7 | 1+(−0.5+0.866i)T |
good | 5 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1−2T+T2 |
| 19 | 1−T+T2 |
| 23 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+T+T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T+T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+T+T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.633467101347565511154702836330, −8.196326751296965268077681621857, −7.49958351367229377470887375163, −6.67632847316378803248875895481, −5.68826070690439759320572913694, −5.02979612245365128530448139990, −4.06108478928931631392451988095, −3.20879248805190118779231409645, −2.32213462980658126936753311184, −1.23122936992700661333303101077,
1.39950496191664247000278156541, 2.92511609828972627507093950251, 3.69450541689916265986934381579, 5.07041090306899905344249599317, 5.51453117300928735154655764194, 5.74277004547041211131294746063, 7.09217965295457934381414450408, 7.925445301327123315978242036883, 8.386964245086595000936451757591, 9.206498672716002321955975821388