L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−0.5 + 0.866i)11-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 2·17-s + 19-s + (0.499 − 0.866i)20-s + (0.499 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 0.999·28-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (−0.5 + 0.866i)11-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 2·17-s + 19-s + (0.499 − 0.866i)20-s + (0.499 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 0.999·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.671813220\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.671813220\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 2T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.633467101347565511154702836330, −8.196326751296965268077681621857, −7.49958351367229377470887375163, −6.67632847316378803248875895481, −5.68826070690439759320572913694, −5.02979612245365128530448139990, −4.06108478928931631392451988095, −3.20879248805190118779231409645, −2.32213462980658126936753311184, −1.23122936992700661333303101077,
1.39950496191664247000278156541, 2.92511609828972627507093950251, 3.69450541689916265986934381579, 5.07041090306899905344249599317, 5.51453117300928735154655764194, 5.74277004547041211131294746063, 7.09217965295457934381414450408, 7.925445301327123315978242036883, 8.386964245086595000936451757591, 9.206498672716002321955975821388