L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s − 0.999·10-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (−0.866 − 0.499i)20-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s − 0.999·10-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (−0.866 − 0.499i)20-s + ⋯ |
Λ(s)=(=(2280s/2ΓC(s)L(s)(0.582−0.813i)Λ(1−s)
Λ(s)=(=(2280s/2ΓC(s)L(s)(0.582−0.813i)Λ(1−s)
Degree: |
2 |
Conductor: |
2280
= 23⋅3⋅5⋅19
|
Sign: |
0.582−0.813i
|
Analytic conductor: |
1.13786 |
Root analytic conductor: |
1.06670 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2280(1019,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2280, ( :0), 0.582−0.813i)
|
Particular Values
L(21) |
≈ |
2.321906306 |
L(21) |
≈ |
2.321906306 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1+(−0.866+0.5i)T |
| 5 | 1+(0.866−0.5i)T |
| 19 | 1+(0.5+0.866i)T |
good | 7 | 1+T2 |
| 11 | 1−T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+T+T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+(0.5−0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 83 | 1+1.73T+T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.877042733969384921656465505016, −8.370875849070038573106877587971, −7.59933552927184822090306189603, −7.06302164851410156027885233510, −6.43207976545182783963571963334, −5.38184734607222233151067264759, −4.31752805424807140184445634346, −3.48856923427398593848118057442, −3.03275513006769400902655131527, −1.76413024488460118182245408806,
1.27452106443419194414054088915, 2.69366926586840131284632843457, 3.31543636472585341741301699676, 4.19923789622440569034677484028, 4.84861184439535711802950320459, 5.52938692528997917763054119643, 6.91407860474367271981769783210, 7.49525858531761550599893381329, 8.411400507298151637257466083938, 9.187766015056056404791682491396