L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s − 0.999·10-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (−0.866 − 0.499i)20-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s − 0.999·10-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.866 + 1.5i)17-s + (0.866 − 0.499i)18-s + (−0.5 − 0.866i)19-s + (−0.866 − 0.499i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 - 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 - 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.321906306\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.321906306\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.73T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.877042733969384921656465505016, −8.370875849070038573106877587971, −7.59933552927184822090306189603, −7.06302164851410156027885233510, −6.43207976545182783963571963334, −5.38184734607222233151067264759, −4.31752805424807140184445634346, −3.48856923427398593848118057442, −3.03275513006769400902655131527, −1.76413024488460118182245408806,
1.27452106443419194414054088915, 2.69366926586840131284632843457, 3.31543636472585341741301699676, 4.19923789622440569034677484028, 4.84861184439535711802950320459, 5.52938692528997917763054119643, 6.91407860474367271981769783210, 7.49525858531761550599893381329, 8.411400507298151637257466083938, 9.187766015056056404791682491396