L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s + 0.999·6-s − 0.999i·8-s + (0.499 − 0.866i)9-s − 0.999·10-s + (−0.866 − 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.866 − 1.5i)17-s + (−0.866 + 0.499i)18-s + (−0.5 − 0.866i)19-s + (0.866 + 0.499i)20-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s + 0.999·6-s − 0.999i·8-s + (0.499 − 0.866i)9-s − 0.999·10-s + (−0.866 − 0.499i)12-s + (−0.499 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.866 − 1.5i)17-s + (−0.866 + 0.499i)18-s + (−0.5 − 0.866i)19-s + (0.866 + 0.499i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.582 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.582 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4385765222\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4385765222\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 1.73T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.302134231497134795045542596163, −8.489372371023483302818291525857, −7.38242635935274160224688200692, −6.56222195710315610346723321764, −5.94550263447709024774483588216, −4.80415369779446560094778212880, −4.23147360148348476275492269912, −2.83103000977866775778828528583, −1.86082495664824207388427668846, −0.42107034883101781765897788991,
1.69614120498622067077696646814, 2.06286263321466900389891292489, 3.86076126554646135307943579802, 5.18021362259896222464727290424, 5.98203917410106343785344125743, 6.25774733151626002877519464436, 7.07074505029389312970365652991, 7.901563131776355809926065744134, 8.542076005864833592040376969577, 9.652981417897061763135296384406