L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s − 5-s + 1.00·6-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (0.707 − 0.707i)10-s − 2i·11-s + (−0.707 + 0.707i)12-s + 1.41i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 − 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s − 5-s + 1.00·6-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (0.707 − 0.707i)10-s − 2i·11-s + (−0.707 + 0.707i)12-s + 1.41i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 − 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
Λ(s)=(=(2280s/2ΓC(s)L(s)iΛ(1−s)
Λ(s)=(=(2280s/2ΓC(s)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
2280
= 23⋅3⋅5⋅19
|
Sign: |
i
|
Analytic conductor: |
1.13786 |
Root analytic conductor: |
1.06670 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2280(1139,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2280, ( :0), i)
|
Particular Values
L(21) |
≈ |
0.3744014898 |
L(21) |
≈ |
0.3744014898 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+T |
| 19 | 1−T |
good | 7 | 1+T2 |
| 11 | 1+2iT−T2 |
| 13 | 1−1.41iT−T2 |
| 17 | 1+T2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1+1.41iT−T2 |
| 41 | 1+T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1+1.41T+T2 |
| 59 | 1+T2 |
| 61 | 1+2iT−T2 |
| 67 | 1+1.41T+T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+T2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | 1−1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.782793213847560318708865958240, −8.103830672841535332111044268784, −7.51191659289841465985318996560, −6.73691923181224540774244912393, −6.11914392004775590811596700980, −5.33544874940124108914983072740, −4.41666077373413560886090769362, −3.17841979441556657397835481272, −1.61658708890865965416116467196, −0.42151937943283536197836364234,
1.21103871898110647874194347277, 2.84037024928082009626347137519, 3.60863320013442869746374920478, 4.57632090422184291193173700152, 5.04228661423271317844112600621, 6.45948293277654186146233724407, 7.41551759960314149018763014763, 7.77815250033549944614597397674, 8.813402087965620523207356172014, 9.636586037390363913669083266580