L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s − 5-s + 1.00·6-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (0.707 − 0.707i)10-s − 2i·11-s + (−0.707 + 0.707i)12-s + 1.41i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 − 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s − 5-s + 1.00·6-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (0.707 − 0.707i)10-s − 2i·11-s + (−0.707 + 0.707i)12-s + 1.41i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 − 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3744014898\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3744014898\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 2iT - T^{2} \) |
| 13 | \( 1 - 1.41iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 1.41iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 2iT - T^{2} \) |
| 67 | \( 1 + 1.41T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.782793213847560318708865958240, −8.103830672841535332111044268784, −7.51191659289841465985318996560, −6.73691923181224540774244912393, −6.11914392004775590811596700980, −5.33544874940124108914983072740, −4.41666077373413560886090769362, −3.17841979441556657397835481272, −1.61658708890865965416116467196, −0.42151937943283536197836364234,
1.21103871898110647874194347277, 2.84037024928082009626347137519, 3.60863320013442869746374920478, 4.57632090422184291193173700152, 5.04228661423271317844112600621, 6.45948293277654186146233724407, 7.41551759960314149018763014763, 7.77815250033549944614597397674, 8.813402087965620523207356172014, 9.636586037390363913669083266580