L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.342 + 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.984 + 0.173i)5-s + (−0.173 − 0.984i)6-s + 0.999i·8-s + (−0.766 − 0.642i)9-s + (0.766 − 0.642i)10-s + (0.642 + 0.766i)12-s + (0.173 − 0.984i)15-s + (−0.5 − 0.866i)16-s + (0.984 − 0.826i)17-s + (0.984 + 0.173i)18-s + (0.939 + 0.342i)19-s + (−0.342 + 0.939i)20-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.342 + 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.984 + 0.173i)5-s + (−0.173 − 0.984i)6-s + 0.999i·8-s + (−0.766 − 0.642i)9-s + (0.766 − 0.642i)10-s + (0.642 + 0.766i)12-s + (0.173 − 0.984i)15-s + (−0.5 − 0.866i)16-s + (0.984 − 0.826i)17-s + (0.984 + 0.173i)18-s + (0.939 + 0.342i)19-s + (−0.342 + 0.939i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5594110762\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5594110762\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.342 - 0.939i)T \) |
| 5 | \( 1 + (0.984 - 0.173i)T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.984 + 0.826i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.300 + 1.70i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-1.50 - 1.26i)T + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (1.50 + 0.266i)T + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (-1.70 - 0.300i)T + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (-1.62 - 0.939i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.304573108382036298277292691030, −8.626954745748782231830267109114, −7.903597395325695761124171059165, −7.12306744235645760941316032433, −6.39527866384974187456422957172, −5.31503560458412692321900782641, −4.82358298734764377092691701561, −3.62479648052862208774986496355, −2.77248744371716278099617990550, −0.840994869105297328409824473227,
0.837298822527157808663962189938, 1.87670867168837745676451316214, 3.15654836774042567337091871207, 3.83735389959299968076707472640, 5.21316917261079897811744817207, 6.09238518292269573647913056621, 7.20553568121515245374868377115, 7.60352099340058831011902083298, 8.086682864780731140491821048420, 9.010646330433010551317661808961