L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.342 + 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.984 + 0.173i)5-s + (−0.173 − 0.984i)6-s + 0.999i·8-s + (−0.766 − 0.642i)9-s + (0.766 − 0.642i)10-s + (0.642 + 0.766i)12-s + (0.173 − 0.984i)15-s + (−0.5 − 0.866i)16-s + (0.984 − 0.826i)17-s + (0.984 + 0.173i)18-s + (0.939 + 0.342i)19-s + (−0.342 + 0.939i)20-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.342 + 0.939i)3-s + (0.499 − 0.866i)4-s + (−0.984 + 0.173i)5-s + (−0.173 − 0.984i)6-s + 0.999i·8-s + (−0.766 − 0.642i)9-s + (0.766 − 0.642i)10-s + (0.642 + 0.766i)12-s + (0.173 − 0.984i)15-s + (−0.5 − 0.866i)16-s + (0.984 − 0.826i)17-s + (0.984 + 0.173i)18-s + (0.939 + 0.342i)19-s + (−0.342 + 0.939i)20-s + ⋯ |
Λ(s)=(=(2280s/2ΓC(s)L(s)(0.356−0.934i)Λ(1−s)
Λ(s)=(=(2280s/2ΓC(s)L(s)(0.356−0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
2280
= 23⋅3⋅5⋅19
|
Sign: |
0.356−0.934i
|
Analytic conductor: |
1.13786 |
Root analytic conductor: |
1.06670 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2280(1469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2280, ( :0), 0.356−0.934i)
|
Particular Values
L(21) |
≈ |
0.5594110762 |
L(21) |
≈ |
0.5594110762 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(0.342−0.939i)T |
| 5 | 1+(0.984−0.173i)T |
| 19 | 1+(−0.939−0.342i)T |
good | 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(0.766−0.642i)T2 |
| 17 | 1+(−0.984+0.826i)T+(0.173−0.984i)T2 |
| 23 | 1+(−0.300+1.70i)T+(−0.939−0.342i)T2 |
| 29 | 1+(0.173+0.984i)T2 |
| 31 | 1+(0.939−1.62i)T+(−0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.766−0.642i)T2 |
| 43 | 1+(−0.939+0.342i)T2 |
| 47 | 1+(−1.50−1.26i)T+(0.173+0.984i)T2 |
| 53 | 1+(1.50+0.266i)T+(0.939+0.342i)T2 |
| 59 | 1+(0.173−0.984i)T2 |
| 61 | 1+(−1.70−0.300i)T+(0.939+0.342i)T2 |
| 67 | 1+(0.173+0.984i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(−0.766−0.642i)T2 |
| 79 | 1+(−0.939−0.342i)T+(0.766+0.642i)T2 |
| 83 | 1+(−1.62−0.939i)T+(0.5+0.866i)T2 |
| 89 | 1+(−0.766+0.642i)T2 |
| 97 | 1+(−0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.304573108382036298277292691030, −8.626954745748782231830267109114, −7.903597395325695761124171059165, −7.12306744235645760941316032433, −6.39527866384974187456422957172, −5.31503560458412692321900782641, −4.82358298734764377092691701561, −3.62479648052862208774986496355, −2.77248744371716278099617990550, −0.840994869105297328409824473227,
0.837298822527157808663962189938, 1.87670867168837745676451316214, 3.15654836774042567337091871207, 3.83735389959299968076707472640, 5.21316917261079897811744817207, 6.09238518292269573647913056621, 7.20553568121515245374868377115, 7.60352099340058831011902083298, 8.086682864780731140491821048420, 9.010646330433010551317661808961