L(s) = 1 | + (0.866 + 0.5i)2-s + (0.342 + 0.939i)3-s + (0.499 + 0.866i)4-s + (0.984 + 0.173i)5-s + (−0.173 + 0.984i)6-s + 0.999i·8-s + (−0.766 + 0.642i)9-s + (0.766 + 0.642i)10-s + (−0.642 + 0.766i)12-s + (0.173 + 0.984i)15-s + (−0.5 + 0.866i)16-s + (−0.984 − 0.826i)17-s + (−0.984 + 0.173i)18-s + (0.939 − 0.342i)19-s + (0.342 + 0.939i)20-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.342 + 0.939i)3-s + (0.499 + 0.866i)4-s + (0.984 + 0.173i)5-s + (−0.173 + 0.984i)6-s + 0.999i·8-s + (−0.766 + 0.642i)9-s + (0.766 + 0.642i)10-s + (−0.642 + 0.766i)12-s + (0.173 + 0.984i)15-s + (−0.5 + 0.866i)16-s + (−0.984 − 0.826i)17-s + (−0.984 + 0.173i)18-s + (0.939 − 0.342i)19-s + (0.342 + 0.939i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.461598925\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.461598925\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.984 + 0.826i)T + (0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (0.300 + 1.70i)T + (-0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (1.50 - 1.26i)T + (0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (-1.50 + 0.266i)T + (0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (-1.70 + 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (1.62 - 0.939i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.399313899642174710785059268439, −8.728064614999930242179623753277, −7.87490611006388416721084217075, −6.91651388262979412051576383986, −6.18609382587339390639499307910, −5.36045570161972751336172682130, −4.74112316356365559276468352395, −3.92988207697281152872630394166, −2.79730037765058146652185456382, −2.28795269865614845689454342154,
1.44231220797025604146390422432, 1.96651756095480005640646469026, 3.07952420133968703780168928538, 3.86689627186954965792043004105, 5.33187860016042714854797281223, 5.57684232631362716036573898427, 6.67008742371356134207488058035, 7.03984949762457948554558267362, 8.228632700090879533218347987776, 9.057133642723107935778576871246