L(s) = 1 | + (0.866 + 0.5i)2-s + (0.342 + 0.939i)3-s + (0.499 + 0.866i)4-s + (0.984 + 0.173i)5-s + (−0.173 + 0.984i)6-s + 0.999i·8-s + (−0.766 + 0.642i)9-s + (0.766 + 0.642i)10-s + (−0.642 + 0.766i)12-s + (0.173 + 0.984i)15-s + (−0.5 + 0.866i)16-s + (−0.984 − 0.826i)17-s + (−0.984 + 0.173i)18-s + (0.939 − 0.342i)19-s + (0.342 + 0.939i)20-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.342 + 0.939i)3-s + (0.499 + 0.866i)4-s + (0.984 + 0.173i)5-s + (−0.173 + 0.984i)6-s + 0.999i·8-s + (−0.766 + 0.642i)9-s + (0.766 + 0.642i)10-s + (−0.642 + 0.766i)12-s + (0.173 + 0.984i)15-s + (−0.5 + 0.866i)16-s + (−0.984 − 0.826i)17-s + (−0.984 + 0.173i)18-s + (0.939 − 0.342i)19-s + (0.342 + 0.939i)20-s + ⋯ |
Λ(s)=(=(2280s/2ΓC(s)L(s)(−0.356−0.934i)Λ(1−s)
Λ(s)=(=(2280s/2ΓC(s)L(s)(−0.356−0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
2280
= 23⋅3⋅5⋅19
|
Sign: |
−0.356−0.934i
|
Analytic conductor: |
1.13786 |
Root analytic conductor: |
1.06670 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2280(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2280, ( :0), −0.356−0.934i)
|
Particular Values
L(21) |
≈ |
2.461598925 |
L(21) |
≈ |
2.461598925 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1+(−0.342−0.939i)T |
| 5 | 1+(−0.984−0.173i)T |
| 19 | 1+(−0.939+0.342i)T |
good | 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+(0.766+0.642i)T2 |
| 17 | 1+(0.984+0.826i)T+(0.173+0.984i)T2 |
| 23 | 1+(0.300+1.70i)T+(−0.939+0.342i)T2 |
| 29 | 1+(0.173−0.984i)T2 |
| 31 | 1+(0.939+1.62i)T+(−0.5+0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.766+0.642i)T2 |
| 43 | 1+(−0.939−0.342i)T2 |
| 47 | 1+(1.50−1.26i)T+(0.173−0.984i)T2 |
| 53 | 1+(−1.50+0.266i)T+(0.939−0.342i)T2 |
| 59 | 1+(0.173+0.984i)T2 |
| 61 | 1+(−1.70+0.300i)T+(0.939−0.342i)T2 |
| 67 | 1+(0.173−0.984i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+(−0.766+0.642i)T2 |
| 79 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 83 | 1+(1.62−0.939i)T+(0.5−0.866i)T2 |
| 89 | 1+(−0.766−0.642i)T2 |
| 97 | 1+(−0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.399313899642174710785059268439, −8.728064614999930242179623753277, −7.87490611006388416721084217075, −6.91651388262979412051576383986, −6.18609382587339390639499307910, −5.36045570161972751336172682130, −4.74112316356365559276468352395, −3.92988207697281152872630394166, −2.79730037765058146652185456382, −2.28795269865614845689454342154,
1.44231220797025604146390422432, 1.96651756095480005640646469026, 3.07952420133968703780168928538, 3.86689627186954965792043004105, 5.33187860016042714854797281223, 5.57684232631362716036573898427, 6.67008742371356134207488058035, 7.03984949762457948554558267362, 8.228632700090879533218347987776, 9.057133642723107935778576871246