Properties

Label 2-22e2-1.1-c1-0-1
Degree $2$
Conductor $484$
Sign $1$
Analytic cond. $3.86475$
Root an. cond. $1.96589$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·3-s + 4.37·5-s + 2.62·9-s − 10.3·15-s + 1.62·23-s + 14.1·25-s + 0.883·27-s + 11.1·31-s + 5.11·37-s + 11.4·45-s − 12·47-s − 7·49-s + 6·53-s + 10.3·59-s − 15.1·67-s − 3.86·69-s + 15.8·71-s − 33.4·75-s − 9.97·81-s − 9.86·89-s − 26.3·93-s − 17.1·97-s − 4·103-s − 12.1·111-s − 7.62·113-s + 7.11·115-s + ⋯
L(s)  = 1  − 1.36·3-s + 1.95·5-s + 0.875·9-s − 2.67·15-s + 0.339·23-s + 2.82·25-s + 0.169·27-s + 1.99·31-s + 0.841·37-s + 1.71·45-s − 1.75·47-s − 49-s + 0.824·53-s + 1.35·59-s − 1.84·67-s − 0.464·69-s + 1.88·71-s − 3.86·75-s − 1.10·81-s − 1.04·89-s − 2.73·93-s − 1.73·97-s − 0.394·103-s − 1.15·111-s − 0.717·113-s + 0.663·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(484\)    =    \(2^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3.86475\)
Root analytic conductor: \(1.96589\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 484,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.277950890\)
\(L(\frac12)\) \(\approx\) \(1.277950890\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2.37T + 3T^{2} \)
5 \( 1 - 4.37T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 1.62T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 11.1T + 31T^{2} \)
37 \( 1 - 5.11T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 12T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 15.1T + 67T^{2} \)
71 \( 1 - 15.8T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 9.86T + 89T^{2} \)
97 \( 1 + 17.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90678716645046167437176099668, −10.09890544132751106411658374752, −9.592596935776882217962835034484, −8.404636360958729750555798476685, −6.75894472225758429941547830740, −6.26167928280954426402695091260, −5.44854738660372947623127224204, −4.72417600974870336732018508119, −2.66755610569428205499615310321, −1.23008901880303198978723571138, 1.23008901880303198978723571138, 2.66755610569428205499615310321, 4.72417600974870336732018508119, 5.44854738660372947623127224204, 6.26167928280954426402695091260, 6.75894472225758429941547830740, 8.404636360958729750555798476685, 9.592596935776882217962835034484, 10.09890544132751106411658374752, 10.90678716645046167437176099668

Graph of the $Z$-function along the critical line