L(s) = 1 | + (0.309 + 0.951i)3-s + (2.42 + 1.76i)5-s + (−0.618 + 1.90i)7-s + (1.61 − 1.17i)9-s + (−3.23 + 2.35i)13-s + (−0.927 + 2.85i)15-s + (4.85 + 3.52i)17-s + (−2.47 − 7.60i)19-s − 1.99·21-s − 3·23-s + (1.23 + 3.80i)25-s + (4.04 + 2.93i)27-s + (−4.04 + 2.93i)31-s + (−4.85 + 3.52i)35-s + (−0.309 + 0.951i)37-s + ⋯ |
L(s) = 1 | + (0.178 + 0.549i)3-s + (1.08 + 0.788i)5-s + (−0.233 + 0.718i)7-s + (0.539 − 0.391i)9-s + (−0.897 + 0.652i)13-s + (−0.239 + 0.736i)15-s + (1.17 + 0.855i)17-s + (−0.567 − 1.74i)19-s − 0.436·21-s − 0.625·23-s + (0.247 + 0.760i)25-s + (0.778 + 0.565i)27-s + (−0.726 + 0.527i)31-s + (−0.820 + 0.596i)35-s + (−0.0508 + 0.156i)37-s + ⋯ |
Λ(s)=(=(484s/2ΓC(s)L(s)(0.266−0.963i)Λ(2−s)
Λ(s)=(=(484s/2ΓC(s+1/2)L(s)(0.266−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
484
= 22⋅112
|
Sign: |
0.266−0.963i
|
Analytic conductor: |
3.86475 |
Root analytic conductor: |
1.96589 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ484(245,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 484, ( :1/2), 0.266−0.963i)
|
Particular Values
L(1) |
≈ |
1.39404+1.06042i |
L(21) |
≈ |
1.39404+1.06042i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(−0.309−0.951i)T+(−2.42+1.76i)T2 |
| 5 | 1+(−2.42−1.76i)T+(1.54+4.75i)T2 |
| 7 | 1+(0.618−1.90i)T+(−5.66−4.11i)T2 |
| 13 | 1+(3.23−2.35i)T+(4.01−12.3i)T2 |
| 17 | 1+(−4.85−3.52i)T+(5.25+16.1i)T2 |
| 19 | 1+(2.47+7.60i)T+(−15.3+11.1i)T2 |
| 23 | 1+3T+23T2 |
| 29 | 1+(−23.4−17.0i)T2 |
| 31 | 1+(4.04−2.93i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.309−0.951i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−33.1+24.0i)T2 |
| 43 | 1−10T+43T2 |
| 47 | 1+(−38.0+27.6i)T2 |
| 53 | 1+(−4.85+3.52i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.927+2.85i)T+(−47.7−34.6i)T2 |
| 61 | 1+(3.23+2.35i)T+(18.8+58.0i)T2 |
| 67 | 1+T+67T2 |
| 71 | 1+(12.1+8.81i)T+(21.9+67.5i)T2 |
| 73 | 1+(−1.23+3.80i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−1.61+1.17i)T+(24.4−75.1i)T2 |
| 83 | 1+(−4.85−3.52i)T+(25.6+78.9i)T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+(−5.66+4.11i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88494202040169504040875008320, −10.14999554086894116824480479761, −9.481222202858886288920714416068, −8.854729544922470334139443461289, −7.33581250524104030925515002168, −6.49094742748738134341241732196, −5.61727120668016419310224964388, −4.42756399396769183806085103039, −3.08118490892394758431057700956, −2.04171192493874822520990477908,
1.15945484992228854286561639339, 2.35128542778674595783181258781, 4.00517394530586940089465546418, 5.25856857005740610670451872142, 6.01105138310948492920737718366, 7.38957450172641131166273749011, 7.82893649174927800200913964437, 9.113544242314591045984786178084, 10.16289698408393385176577299557, 10.25346058594998907727231018249