L(s) = 1 | + (0.309 + 0.951i)3-s + (2.42 + 1.76i)5-s + (−0.618 + 1.90i)7-s + (1.61 − 1.17i)9-s + (−3.23 + 2.35i)13-s + (−0.927 + 2.85i)15-s + (4.85 + 3.52i)17-s + (−2.47 − 7.60i)19-s − 1.99·21-s − 3·23-s + (1.23 + 3.80i)25-s + (4.04 + 2.93i)27-s + (−4.04 + 2.93i)31-s + (−4.85 + 3.52i)35-s + (−0.309 + 0.951i)37-s + ⋯ |
L(s) = 1 | + (0.178 + 0.549i)3-s + (1.08 + 0.788i)5-s + (−0.233 + 0.718i)7-s + (0.539 − 0.391i)9-s + (−0.897 + 0.652i)13-s + (−0.239 + 0.736i)15-s + (1.17 + 0.855i)17-s + (−0.567 − 1.74i)19-s − 0.436·21-s − 0.625·23-s + (0.247 + 0.760i)25-s + (0.778 + 0.565i)27-s + (−0.726 + 0.527i)31-s + (−0.820 + 0.596i)35-s + (−0.0508 + 0.156i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39404 + 1.06042i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39404 + 1.06042i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-0.309 - 0.951i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-2.42 - 1.76i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.618 - 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (3.23 - 2.35i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.85 - 3.52i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (2.47 + 7.60i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 3T + 23T^{2} \) |
| 29 | \( 1 + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (4.04 - 2.93i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.309 - 0.951i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-4.85 + 3.52i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.927 + 2.85i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (3.23 + 2.35i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + T + 67T^{2} \) |
| 71 | \( 1 + (12.1 + 8.81i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.23 + 3.80i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.61 + 1.17i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-4.85 - 3.52i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + (-5.66 + 4.11i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88494202040169504040875008320, −10.14999554086894116824480479761, −9.481222202858886288920714416068, −8.854729544922470334139443461289, −7.33581250524104030925515002168, −6.49094742748738134341241732196, −5.61727120668016419310224964388, −4.42756399396769183806085103039, −3.08118490892394758431057700956, −2.04171192493874822520990477908,
1.15945484992228854286561639339, 2.35128542778674595783181258781, 4.00517394530586940089465546418, 5.25856857005740610670451872142, 6.01105138310948492920737718366, 7.38957450172641131166273749011, 7.82893649174927800200913964437, 9.113544242314591045984786178084, 10.16289698408393385176577299557, 10.25346058594998907727231018249