L(s) = 1 | + (−0.809 − 2.48i)3-s + (1.30 + 0.951i)5-s + (1.19 − 3.66i)7-s + (−3.11 + 2.26i)9-s + (1.92 − 1.40i)13-s + (1.30 − 4.02i)15-s + (1.92 + 1.40i)17-s + (−1.19 − 3.66i)19-s − 10.0·21-s − 2.47·23-s + (−0.736 − 2.26i)25-s + (1.80 + 1.31i)27-s + (−2.66 + 8.19i)29-s + (−0.690 + 0.502i)31-s + (5.04 − 3.66i)35-s + ⋯ |
L(s) = 1 | + (−0.467 − 1.43i)3-s + (0.585 + 0.425i)5-s + (0.450 − 1.38i)7-s + (−1.03 + 0.755i)9-s + (0.534 − 0.388i)13-s + (0.337 − 1.04i)15-s + (0.467 + 0.339i)17-s + (−0.273 − 0.840i)19-s − 2.20·21-s − 0.515·23-s + (−0.147 − 0.453i)25-s + (0.348 + 0.252i)27-s + (−0.494 + 1.52i)29-s + (−0.124 + 0.0901i)31-s + (0.852 − 0.619i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.530 + 0.847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.638521 - 1.15230i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.638521 - 1.15230i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.809 + 2.48i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.30 - 0.951i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.19 + 3.66i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.92 + 1.40i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.92 - 1.40i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.19 + 3.66i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.47T + 23T^{2} \) |
| 29 | \( 1 + (2.66 - 8.19i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.690 - 0.502i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.572 - 1.76i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.66 + 8.19i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-0.427 - 1.31i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.30 + 2.40i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.336 + 1.03i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.92 - 1.40i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 12.9T + 67T^{2} \) |
| 71 | \( 1 + (-5.16 - 3.75i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.281 + 0.865i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (5.78 - 4.20i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-10.5 - 7.66i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 0.472T + 89T^{2} \) |
| 97 | \( 1 + (-11.7 + 8.55i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75995237817235674501413115238, −10.11070645038356005015816054633, −8.621644805833393307978319747476, −7.65778654935867587374017488855, −6.99020009699597258661366239713, −6.28391953474641100465568500152, −5.21637355879491133525905772197, −3.69800636310515816265694489778, −2.05828146868527219068607943632, −0.890890576571586696560683311209,
2.03054815940115123780382073172, 3.63780121958315386093209429462, 4.74396113408630387427084492874, 5.59140007141966739848062126577, 6.09398667100770180032193753771, 7.971831545909616965577349615314, 8.915274851079268624966294248502, 9.553300732954448761024702264402, 10.21260498023722732551512060975, 11.36889184451215961412180185360