L(s) = 1 | + (0.618 − 1.90i)3-s + (−2.42 + 1.76i)5-s + (−1.07 − 3.29i)7-s + (−0.809 − 0.587i)9-s + (−4.20 − 3.05i)13-s + (1.85 + 5.70i)15-s + (−4.20 + 3.05i)17-s + (1.07 − 3.29i)19-s − 6.92·21-s − 6·23-s + (1.23 − 3.80i)25-s + (3.23 − 2.35i)27-s + (−1.60 − 4.94i)29-s + (1.61 + 1.17i)31-s + (8.40 + 6.10i)35-s + ⋯ |
L(s) = 1 | + (0.356 − 1.09i)3-s + (−1.08 + 0.788i)5-s + (−0.404 − 1.24i)7-s + (−0.269 − 0.195i)9-s + (−1.16 − 0.847i)13-s + (0.478 + 1.47i)15-s + (−1.01 + 0.740i)17-s + (0.245 − 0.755i)19-s − 1.51·21-s − 1.25·23-s + (0.247 − 0.760i)25-s + (0.622 − 0.452i)27-s + (−0.298 − 0.917i)29-s + (0.290 + 0.211i)31-s + (1.42 + 1.03i)35-s + ⋯ |
Λ(s)=(=(484s/2ΓC(s)L(s)(−0.975+0.220i)Λ(2−s)
Λ(s)=(=(484s/2ΓC(s+1/2)L(s)(−0.975+0.220i)Λ(1−s)
Degree: |
2 |
Conductor: |
484
= 22⋅112
|
Sign: |
−0.975+0.220i
|
Analytic conductor: |
3.86475 |
Root analytic conductor: |
1.96589 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ484(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 484, ( :1/2), −0.975+0.220i)
|
Particular Values
L(1) |
≈ |
0.0728288−0.651908i |
L(21) |
≈ |
0.0728288−0.651908i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(−0.618+1.90i)T+(−2.42−1.76i)T2 |
| 5 | 1+(2.42−1.76i)T+(1.54−4.75i)T2 |
| 7 | 1+(1.07+3.29i)T+(−5.66+4.11i)T2 |
| 13 | 1+(4.20+3.05i)T+(4.01+12.3i)T2 |
| 17 | 1+(4.20−3.05i)T+(5.25−16.1i)T2 |
| 19 | 1+(−1.07+3.29i)T+(−15.3−11.1i)T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+(1.60+4.94i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−1.61−1.17i)T+(9.57+29.4i)T2 |
| 37 | 1+(−0.309−0.951i)T+(−29.9+21.7i)T2 |
| 41 | 1+(1.60−4.94i)T+(−33.1−24.0i)T2 |
| 43 | 1+43T2 |
| 47 | 1+(−1.85+5.70i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−2.42−1.76i)T+(16.3+50.4i)T2 |
| 59 | 1+(−47.7+34.6i)T2 |
| 61 | 1+(−11.2+8.14i)T+(18.8−58.0i)T2 |
| 67 | 1+2T+67T2 |
| 71 | 1+(21.9−67.5i)T2 |
| 73 | 1+(2.14+6.58i)T+(−59.0+42.9i)T2 |
| 79 | 1+(2.80+2.03i)T+(24.4+75.1i)T2 |
| 83 | 1+(−8.40+6.10i)T+(25.6−78.9i)T2 |
| 89 | 1−15T+89T2 |
| 97 | 1+(4.04+2.93i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57452885704478619954083217910, −9.902811524831733221658861561031, −8.321831380003533144693634970550, −7.61927707829042791593551834654, −7.13977268665294810624635897971, −6.36523027303624625484282957568, −4.53866992888033644827080646767, −3.52235981530607976794156224896, −2.32333578395404876215973629464, −0.36148131048104681031669543136,
2.43121871883488838962939537375, 3.80524034706204569090963199660, 4.55101552156429345134867232519, 5.44528180839110309185690222641, 6.88978409245489273468400204120, 8.050559493354519739151629485784, 8.999547538451491234567072430202, 9.344036891858636104214463272551, 10.30804182061234352392479610720, 11.64563345249898489616272164366