L(s) = 1 | + (0.618 − 1.90i)3-s + (−2.42 + 1.76i)5-s + (−1.07 − 3.29i)7-s + (−0.809 − 0.587i)9-s + (−4.20 − 3.05i)13-s + (1.85 + 5.70i)15-s + (−4.20 + 3.05i)17-s + (1.07 − 3.29i)19-s − 6.92·21-s − 6·23-s + (1.23 − 3.80i)25-s + (3.23 − 2.35i)27-s + (−1.60 − 4.94i)29-s + (1.61 + 1.17i)31-s + (8.40 + 6.10i)35-s + ⋯ |
L(s) = 1 | + (0.356 − 1.09i)3-s + (−1.08 + 0.788i)5-s + (−0.404 − 1.24i)7-s + (−0.269 − 0.195i)9-s + (−1.16 − 0.847i)13-s + (0.478 + 1.47i)15-s + (−1.01 + 0.740i)17-s + (0.245 − 0.755i)19-s − 1.51·21-s − 1.25·23-s + (0.247 − 0.760i)25-s + (0.622 − 0.452i)27-s + (−0.298 − 0.917i)29-s + (0.290 + 0.211i)31-s + (1.42 + 1.03i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 484 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.975 + 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0728288 - 0.651908i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0728288 - 0.651908i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-0.618 + 1.90i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (2.42 - 1.76i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.07 + 3.29i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (4.20 + 3.05i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (4.20 - 3.05i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.07 + 3.29i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 29 | \( 1 + (1.60 + 4.94i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.61 - 1.17i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.60 - 4.94i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-1.85 + 5.70i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.42 - 1.76i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-11.2 + 8.14i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.14 + 6.58i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (2.80 + 2.03i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-8.40 + 6.10i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 15T + 89T^{2} \) |
| 97 | \( 1 + (4.04 + 2.93i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57452885704478619954083217910, −9.902811524831733221658861561031, −8.321831380003533144693634970550, −7.61927707829042791593551834654, −7.13977268665294810624635897971, −6.36523027303624625484282957568, −4.53866992888033644827080646767, −3.52235981530607976794156224896, −2.32333578395404876215973629464, −0.36148131048104681031669543136,
2.43121871883488838962939537375, 3.80524034706204569090963199660, 4.55101552156429345134867232519, 5.44528180839110309185690222641, 6.88978409245489273468400204120, 8.050559493354519739151629485784, 8.999547538451491234567072430202, 9.344036891858636104214463272551, 10.30804182061234352392479610720, 11.64563345249898489616272164366