L(s) = 1 | + (−0.809 − 0.587i)3-s + (−0.927 + 2.85i)5-s + (1.61 − 1.17i)7-s + (−0.618 − 1.90i)9-s + (1.23 + 3.80i)13-s + (2.42 − 1.76i)15-s + (−1.85 + 5.70i)17-s + (6.47 + 4.70i)19-s − 2·21-s − 3·23-s + (−3.23 − 2.35i)25-s + (−1.54 + 4.75i)27-s + (1.54 + 4.75i)31-s + (1.85 + 5.70i)35-s + (0.809 − 0.587i)37-s + ⋯ |
L(s) = 1 | + (−0.467 − 0.339i)3-s + (−0.414 + 1.27i)5-s + (0.611 − 0.444i)7-s + (−0.206 − 0.634i)9-s + (0.342 + 1.05i)13-s + (0.626 − 0.455i)15-s + (−0.449 + 1.38i)17-s + (1.48 + 1.07i)19-s − 0.436·21-s − 0.625·23-s + (−0.647 − 0.470i)25-s + (−0.297 + 0.915i)27-s + (0.277 + 0.854i)31-s + (0.313 + 0.964i)35-s + (0.133 − 0.0966i)37-s + ⋯ |
Λ(s)=(=(484s/2ΓC(s)L(s)(0.437−0.899i)Λ(2−s)
Λ(s)=(=(484s/2ΓC(s+1/2)L(s)(0.437−0.899i)Λ(1−s)
Degree: |
2 |
Conductor: |
484
= 22⋅112
|
Sign: |
0.437−0.899i
|
Analytic conductor: |
3.86475 |
Root analytic conductor: |
1.96589 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ484(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 484, ( :1/2), 0.437−0.899i)
|
Particular Values
L(1) |
≈ |
0.917858+0.573898i |
L(21) |
≈ |
0.917858+0.573898i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(0.809+0.587i)T+(0.927+2.85i)T2 |
| 5 | 1+(0.927−2.85i)T+(−4.04−2.93i)T2 |
| 7 | 1+(−1.61+1.17i)T+(2.16−6.65i)T2 |
| 13 | 1+(−1.23−3.80i)T+(−10.5+7.64i)T2 |
| 17 | 1+(1.85−5.70i)T+(−13.7−9.99i)T2 |
| 19 | 1+(−6.47−4.70i)T+(5.87+18.0i)T2 |
| 23 | 1+3T+23T2 |
| 29 | 1+(8.96−27.5i)T2 |
| 31 | 1+(−1.54−4.75i)T+(−25.0+18.2i)T2 |
| 37 | 1+(−0.809+0.587i)T+(11.4−35.1i)T2 |
| 41 | 1+(12.6+38.9i)T2 |
| 43 | 1−10T+43T2 |
| 47 | 1+(14.5+44.6i)T2 |
| 53 | 1+(1.85+5.70i)T+(−42.8+31.1i)T2 |
| 59 | 1+(2.42−1.76i)T+(18.2−56.1i)T2 |
| 61 | 1+(−1.23+3.80i)T+(−49.3−35.8i)T2 |
| 67 | 1+T+67T2 |
| 71 | 1+(−4.63+14.2i)T+(−57.4−41.7i)T2 |
| 73 | 1+(3.23−2.35i)T+(22.5−69.4i)T2 |
| 79 | 1+(0.618+1.90i)T+(−63.9+46.4i)T2 |
| 83 | 1+(1.85−5.70i)T+(−67.1−48.7i)T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+(2.16+6.65i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15679624540527634512232008309, −10.54294040774090417440630834271, −9.461710514557496028302263049568, −8.236239476541034713312465163456, −7.35282880578821108307230286617, −6.56518263730742926592386490519, −5.80503758436455896158296472628, −4.18844930802716877080359787905, −3.32869625136823597935180608635, −1.58062411332497186561083618198,
0.75657274691484477852318630432, 2.66317511789158502783548007910, 4.38964446451887250315531541308, 5.12014718249656613689065079337, 5.69060491927036264727887658014, 7.42396389834517857343184190716, 8.155017022335705648214371107394, 9.002696220187920954717621838272, 9.851736772060427031113255680687, 11.11871204488279129646591513574