L(s) = 1 | − 0.390·3-s + (1.96 − 0.576i)5-s + (−0.526 + 3.65i)7-s − 2.84·9-s + (2.68 + 1.94i)11-s + (−4.47 + 5.16i)13-s + (−0.767 + 0.225i)15-s + (4.70 − 3.02i)17-s + (3.38 + 2.17i)19-s + (0.205 − 1.42i)21-s + (−0.357 − 2.48i)23-s + (−0.680 + 0.437i)25-s + 2.28·27-s + (−4.22 − 2.71i)29-s + (4.81 + 5.55i)31-s + ⋯ |
L(s) = 1 | − 0.225·3-s + (0.878 − 0.257i)5-s + (−0.198 + 1.38i)7-s − 0.949·9-s + (0.809 + 0.586i)11-s + (−1.24 + 1.43i)13-s + (−0.198 + 0.0581i)15-s + (1.14 − 0.732i)17-s + (0.777 + 0.499i)19-s + (0.0448 − 0.311i)21-s + (−0.0745 − 0.518i)23-s + (−0.136 + 0.0874i)25-s + 0.439·27-s + (−0.785 − 0.504i)29-s + (0.864 + 0.997i)31-s + ⋯ |
Λ(s)=(=(484s/2ΓC(s)L(s)(0.374−0.927i)Λ(2−s)
Λ(s)=(=(484s/2ΓC(s+1/2)L(s)(0.374−0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
484
= 22⋅112
|
Sign: |
0.374−0.927i
|
Analytic conductor: |
3.86475 |
Root analytic conductor: |
1.96589 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ484(221,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 484, ( :1/2), 0.374−0.927i)
|
Particular Values
L(1) |
≈ |
1.10068+0.742299i |
L(21) |
≈ |
1.10068+0.742299i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−2.68−1.94i)T |
good | 3 | 1+0.390T+3T2 |
| 5 | 1+(−1.96+0.576i)T+(4.20−2.70i)T2 |
| 7 | 1+(0.526−3.65i)T+(−6.71−1.97i)T2 |
| 13 | 1+(4.47−5.16i)T+(−1.85−12.8i)T2 |
| 17 | 1+(−4.70+3.02i)T+(7.06−15.4i)T2 |
| 19 | 1+(−3.38−2.17i)T+(7.89+17.2i)T2 |
| 23 | 1+(0.357+2.48i)T+(−22.0+6.47i)T2 |
| 29 | 1+(4.22+2.71i)T+(12.0+26.3i)T2 |
| 31 | 1+(−4.81−5.55i)T+(−4.41+30.6i)T2 |
| 37 | 1+(2.20+2.54i)T+(−5.26+36.6i)T2 |
| 41 | 1+(−5.18−11.3i)T+(−26.8+30.9i)T2 |
| 43 | 1+(−5.07−1.49i)T+(36.1+23.2i)T2 |
| 47 | 1+(−1.72+3.76i)T+(−30.7−35.5i)T2 |
| 53 | 1+(−0.659+4.58i)T+(−50.8−14.9i)T2 |
| 59 | 1+(0.325−0.712i)T+(−38.6−44.5i)T2 |
| 61 | 1+(0.440−0.963i)T+(−39.9−46.1i)T2 |
| 67 | 1+(2.04+4.48i)T+(−43.8+50.6i)T2 |
| 71 | 1+(1.87+1.20i)T+(29.4+64.5i)T2 |
| 73 | 1+(2.25+15.6i)T+(−70.0+20.5i)T2 |
| 79 | 1+(6.55−1.92i)T+(66.4−42.7i)T2 |
| 83 | 1+(−0.413+2.87i)T+(−79.6−23.3i)T2 |
| 89 | 1+(3.21−2.06i)T+(36.9−80.9i)T2 |
| 97 | 1+(2.35+0.692i)T+(81.6+52.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50919218105039568926820259086, −9.828837307569495785721472315872, −9.489088841206676445463040870316, −8.763875130011546432569479455848, −7.43939116418482654811475253904, −6.28289687200564523982515235929, −5.59000317098783256511337178100, −4.71119437683156271188138303631, −2.91749668816696841375754615344, −1.86640966862029136016733709865,
0.853900440263696063693794559654, 2.78226991980312964230984972624, 3.83274220963884978498180902084, 5.42653450896760999796882670734, 5.95174104346691633036343869908, 7.20481490593990754083549698778, 7.913628320203575000502148762334, 9.241837725504973643569649819229, 10.09051521587906351122520873878, 10.60712027572204728995067369422