L(s) = 1 | − 2-s − 3-s − 4-s − 2·5-s + 6-s + 7-s + 3·8-s + 9-s + 2·10-s − 11-s + 12-s + 6·13-s − 14-s + 2·15-s − 16-s + 2·17-s − 18-s + 4·19-s + 2·20-s − 21-s + 22-s − 3·24-s − 25-s − 6·26-s − 27-s − 28-s − 2·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.377·7-s + 1.06·8-s + 1/3·9-s + 0.632·10-s − 0.301·11-s + 0.288·12-s + 1.66·13-s − 0.267·14-s + 0.516·15-s − 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.447·20-s − 0.218·21-s + 0.213·22-s − 0.612·24-s − 1/5·25-s − 1.17·26-s − 0.192·27-s − 0.188·28-s − 0.371·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5822888619\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5822888619\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
good | 2 | \( 1 + T + p T^{2} \) |
| 5 | \( 1 + 2 T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 - 10 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 18 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89946826402131998655781888440, −11.18319190967266805266750560108, −10.32896954095524943775333918549, −9.238375783455941661417111092919, −8.146329212122427589249395398868, −7.61386400817600432579143653551, −6.06507120539099918049903981653, −4.78033654342364343647378297963, −3.69478633591386645327522922963, −1.02008449562817059954899874886,
1.02008449562817059954899874886, 3.69478633591386645327522922963, 4.78033654342364343647378297963, 6.06507120539099918049903981653, 7.61386400817600432579143653551, 8.146329212122427589249395398868, 9.238375783455941661417111092919, 10.32896954095524943775333918549, 11.18319190967266805266750560108, 11.89946826402131998655781888440