L(s) = 1 | − 3.63·2-s − 3·3-s + 5.18·4-s + 21.1·5-s + 10.8·6-s + 7·7-s + 10.2·8-s + 9·9-s − 76.6·10-s + 11·11-s − 15.5·12-s + 87.3·13-s − 25.4·14-s − 63.3·15-s − 78.6·16-s − 28.2·17-s − 32.6·18-s − 97.9·19-s + 109.·20-s − 21·21-s − 39.9·22-s − 112.·23-s − 30.6·24-s + 320.·25-s − 317.·26-s − 27·27-s + 36.2·28-s + ⋯ |
L(s) = 1 | − 1.28·2-s − 0.577·3-s + 0.647·4-s + 1.88·5-s + 0.741·6-s + 0.377·7-s + 0.452·8-s + 0.333·9-s − 2.42·10-s + 0.301·11-s − 0.373·12-s + 1.86·13-s − 0.485·14-s − 1.09·15-s − 1.22·16-s − 0.403·17-s − 0.427·18-s − 1.18·19-s + 1.22·20-s − 0.218·21-s − 0.387·22-s − 1.01·23-s − 0.261·24-s + 2.56·25-s − 2.39·26-s − 0.192·27-s + 0.244·28-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.167835244 |
L(21) |
≈ |
1.167835244 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1+3.63T+8T2 |
| 5 | 1−21.1T+125T2 |
| 13 | 1−87.3T+2.19e3T2 |
| 17 | 1+28.2T+4.91e3T2 |
| 19 | 1+97.9T+6.85e3T2 |
| 23 | 1+112.T+1.21e4T2 |
| 29 | 1−14.9T+2.43e4T2 |
| 31 | 1−138.T+2.97e4T2 |
| 37 | 1−206.T+5.06e4T2 |
| 41 | 1−321.T+6.89e4T2 |
| 43 | 1−285.T+7.95e4T2 |
| 47 | 1+303.T+1.03e5T2 |
| 53 | 1+554.T+1.48e5T2 |
| 59 | 1+693.T+2.05e5T2 |
| 61 | 1−156.T+2.26e5T2 |
| 67 | 1−584.T+3.00e5T2 |
| 71 | 1−363.T+3.57e5T2 |
| 73 | 1+747.T+3.89e5T2 |
| 79 | 1−419.T+4.93e5T2 |
| 83 | 1−1.17e3T+5.71e5T2 |
| 89 | 1+397.T+7.04e5T2 |
| 97 | 1+1.33e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12559454992077890728740463258, −10.68135051395737917094302759166, −9.742425860901052985000236764127, −9.001533901847018301292413133202, −8.118103597015872081320266812156, −6.45045136289045120851465561453, −6.03016613445236212322849883334, −4.48850284240629286807991395865, −2.05081071765436100564573873773, −1.09844256276300120927701175377,
1.09844256276300120927701175377, 2.05081071765436100564573873773, 4.48850284240629286807991395865, 6.03016613445236212322849883334, 6.45045136289045120851465561453, 8.118103597015872081320266812156, 9.001533901847018301292413133202, 9.742425860901052985000236764127, 10.68135051395737917094302759166, 11.12559454992077890728740463258