Properties

Label 2-231-1.1-c3-0-13
Degree $2$
Conductor $231$
Sign $1$
Analytic cond. $13.6294$
Root an. cond. $3.69180$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.561·2-s + 3·3-s − 7.68·4-s + 18.6·5-s + 1.68·6-s + 7·7-s − 8.80·8-s + 9·9-s + 10.4·10-s − 11·11-s − 23.0·12-s + 36.4·13-s + 3.93·14-s + 56.0·15-s + 56.5·16-s + 41.1·17-s + 5.05·18-s − 23.6·19-s − 143.·20-s + 21·21-s − 6.17·22-s − 140.·23-s − 26.4·24-s + 224.·25-s + 20.4·26-s + 27·27-s − 53.7·28-s + ⋯
L(s)  = 1  + 0.198·2-s + 0.577·3-s − 0.960·4-s + 1.67·5-s + 0.114·6-s + 0.377·7-s − 0.389·8-s + 0.333·9-s + 0.331·10-s − 0.301·11-s − 0.554·12-s + 0.777·13-s + 0.0750·14-s + 0.964·15-s + 0.883·16-s + 0.586·17-s + 0.0661·18-s − 0.286·19-s − 1.60·20-s + 0.218·21-s − 0.0598·22-s − 1.26·23-s − 0.224·24-s + 1.79·25-s + 0.154·26-s + 0.192·27-s − 0.363·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(231\)    =    \(3 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(13.6294\)
Root analytic conductor: \(3.69180\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 231,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.708015857\)
\(L(\frac12)\) \(\approx\) \(2.708015857\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 0.561T + 8T^{2} \)
5 \( 1 - 18.6T + 125T^{2} \)
13 \( 1 - 36.4T + 2.19e3T^{2} \)
17 \( 1 - 41.1T + 4.91e3T^{2} \)
19 \( 1 + 23.6T + 6.85e3T^{2} \)
23 \( 1 + 140.T + 1.21e4T^{2} \)
29 \( 1 - 278.T + 2.43e4T^{2} \)
31 \( 1 - 191.T + 2.97e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 + 322.T + 6.89e4T^{2} \)
43 \( 1 + 3.67T + 7.95e4T^{2} \)
47 \( 1 + 397.T + 1.03e5T^{2} \)
53 \( 1 - 597.T + 1.48e5T^{2} \)
59 \( 1 - 668.T + 2.05e5T^{2} \)
61 \( 1 + 667.T + 2.26e5T^{2} \)
67 \( 1 + 730.T + 3.00e5T^{2} \)
71 \( 1 + 31.2T + 3.57e5T^{2} \)
73 \( 1 + 434.T + 3.89e5T^{2} \)
79 \( 1 + 782.T + 4.93e5T^{2} \)
83 \( 1 + 426.T + 5.71e5T^{2} \)
89 \( 1 + 899.T + 7.04e5T^{2} \)
97 \( 1 + 942.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98919978424583024658441025743, −10.22086137157344132895095267758, −9.975513788543823733855051199593, −8.778654827260416413432319458108, −8.161433505919597216027701969169, −6.39369662888452053872925597664, −5.50172407959130252243984210451, −4.37035250923888642440931641446, −2.82463910437626107578622233504, −1.35609486101962426245410304782, 1.35609486101962426245410304782, 2.82463910437626107578622233504, 4.37035250923888642440931641446, 5.50172407959130252243984210451, 6.39369662888452053872925597664, 8.161433505919597216027701969169, 8.778654827260416413432319458108, 9.975513788543823733855051199593, 10.22086137157344132895095267758, 11.98919978424583024658441025743

Graph of the $Z$-function along the critical line