L(s) = 1 | + 0.561·2-s + 3·3-s − 7.68·4-s + 18.6·5-s + 1.68·6-s + 7·7-s − 8.80·8-s + 9·9-s + 10.4·10-s − 11·11-s − 23.0·12-s + 36.4·13-s + 3.93·14-s + 56.0·15-s + 56.5·16-s + 41.1·17-s + 5.05·18-s − 23.6·19-s − 143.·20-s + 21·21-s − 6.17·22-s − 140.·23-s − 26.4·24-s + 224.·25-s + 20.4·26-s + 27·27-s − 53.7·28-s + ⋯ |
L(s) = 1 | + 0.198·2-s + 0.577·3-s − 0.960·4-s + 1.67·5-s + 0.114·6-s + 0.377·7-s − 0.389·8-s + 0.333·9-s + 0.331·10-s − 0.301·11-s − 0.554·12-s + 0.777·13-s + 0.0750·14-s + 0.964·15-s + 0.883·16-s + 0.586·17-s + 0.0661·18-s − 0.286·19-s − 1.60·20-s + 0.218·21-s − 0.0598·22-s − 1.26·23-s − 0.224·24-s + 1.79·25-s + 0.154·26-s + 0.192·27-s − 0.363·28-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.708015857 |
L(21) |
≈ |
2.708015857 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1−0.561T+8T2 |
| 5 | 1−18.6T+125T2 |
| 13 | 1−36.4T+2.19e3T2 |
| 17 | 1−41.1T+4.91e3T2 |
| 19 | 1+23.6T+6.85e3T2 |
| 23 | 1+140.T+1.21e4T2 |
| 29 | 1−278.T+2.43e4T2 |
| 31 | 1−191.T+2.97e4T2 |
| 37 | 1−196.T+5.06e4T2 |
| 41 | 1+322.T+6.89e4T2 |
| 43 | 1+3.67T+7.95e4T2 |
| 47 | 1+397.T+1.03e5T2 |
| 53 | 1−597.T+1.48e5T2 |
| 59 | 1−668.T+2.05e5T2 |
| 61 | 1+667.T+2.26e5T2 |
| 67 | 1+730.T+3.00e5T2 |
| 71 | 1+31.2T+3.57e5T2 |
| 73 | 1+434.T+3.89e5T2 |
| 79 | 1+782.T+4.93e5T2 |
| 83 | 1+426.T+5.71e5T2 |
| 89 | 1+899.T+7.04e5T2 |
| 97 | 1+942.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98919978424583024658441025743, −10.22086137157344132895095267758, −9.975513788543823733855051199593, −8.778654827260416413432319458108, −8.161433505919597216027701969169, −6.39369662888452053872925597664, −5.50172407959130252243984210451, −4.37035250923888642440931641446, −2.82463910437626107578622233504, −1.35609486101962426245410304782,
1.35609486101962426245410304782, 2.82463910437626107578622233504, 4.37035250923888642440931641446, 5.50172407959130252243984210451, 6.39369662888452053872925597664, 8.161433505919597216027701969169, 8.778654827260416413432319458108, 9.975513788543823733855051199593, 10.22086137157344132895095267758, 11.98919978424583024658441025743