L(s) = 1 | − 0.561·2-s − 3·3-s − 7.68·4-s + 6.68·5-s + 1.68·6-s + 7·7-s + 8.80·8-s + 9·9-s − 3.75·10-s − 11·11-s + 23.0·12-s + 14.3·13-s − 3.93·14-s − 20.0·15-s + 56.5·16-s − 47.7·17-s − 5.05·18-s + 11.9·19-s − 51.3·20-s − 21·21-s + 6.17·22-s − 44.4·23-s − 26.4·24-s − 80.3·25-s − 8.03·26-s − 27·27-s − 53.7·28-s + ⋯ |
L(s) = 1 | − 0.198·2-s − 0.577·3-s − 0.960·4-s + 0.597·5-s + 0.114·6-s + 0.377·7-s + 0.389·8-s + 0.333·9-s − 0.118·10-s − 0.301·11-s + 0.554·12-s + 0.305·13-s − 0.0750·14-s − 0.345·15-s + 0.883·16-s − 0.681·17-s − 0.0661·18-s + 0.143·19-s − 0.574·20-s − 0.218·21-s + 0.0598·22-s − 0.403·23-s − 0.224·24-s − 0.642·25-s − 0.0605·26-s − 0.192·27-s − 0.363·28-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1+0.561T+8T2 |
| 5 | 1−6.68T+125T2 |
| 13 | 1−14.3T+2.19e3T2 |
| 17 | 1+47.7T+4.91e3T2 |
| 19 | 1−11.9T+6.85e3T2 |
| 23 | 1+44.4T+1.21e4T2 |
| 29 | 1+139.T+2.43e4T2 |
| 31 | 1+208.T+2.97e4T2 |
| 37 | 1+253.T+5.06e4T2 |
| 41 | 1+156.T+6.89e4T2 |
| 43 | 1+263.T+7.95e4T2 |
| 47 | 1−386.T+1.03e5T2 |
| 53 | 1+36.5T+1.48e5T2 |
| 59 | 1+114.T+2.05e5T2 |
| 61 | 1+53.0T+2.26e5T2 |
| 67 | 1−132.T+3.00e5T2 |
| 71 | 1−583.T+3.57e5T2 |
| 73 | 1+817.T+3.89e5T2 |
| 79 | 1+369.T+4.93e5T2 |
| 83 | 1+69.1T+5.71e5T2 |
| 89 | 1−467.T+7.04e5T2 |
| 97 | 1+1.17e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12632039439789312964397160677, −10.26353569918795863586993359870, −9.368351632095607639036362873876, −8.450150749973484249568952242335, −7.27875637380689676871863428736, −5.86429279627521328844773784359, −5.06922801471848667079510326287, −3.85003099326290696256221944600, −1.73157202825688534621361497777, 0,
1.73157202825688534621361497777, 3.85003099326290696256221944600, 5.06922801471848667079510326287, 5.86429279627521328844773784359, 7.27875637380689676871863428736, 8.450150749973484249568952242335, 9.368351632095607639036362873876, 10.26353569918795863586993359870, 11.12632039439789312964397160677