L(s) = 1 | − 4.79·2-s − 3·3-s + 14.9·4-s − 6.25·5-s + 14.3·6-s + 7·7-s − 33.4·8-s + 9·9-s + 29.9·10-s + 11·11-s − 44.9·12-s − 35.7·13-s − 33.5·14-s + 18.7·15-s + 40.4·16-s − 133.·17-s − 43.1·18-s + 161.·19-s − 93.6·20-s − 21·21-s − 52.7·22-s − 66.2·23-s + 100.·24-s − 85.8·25-s + 171.·26-s − 27·27-s + 104.·28-s + ⋯ |
L(s) = 1 | − 1.69·2-s − 0.577·3-s + 1.87·4-s − 0.559·5-s + 0.978·6-s + 0.377·7-s − 1.47·8-s + 0.333·9-s + 0.947·10-s + 0.301·11-s − 1.08·12-s − 0.763·13-s − 0.640·14-s + 0.322·15-s + 0.632·16-s − 1.89·17-s − 0.564·18-s + 1.95·19-s − 1.04·20-s − 0.218·21-s − 0.510·22-s − 0.600·23-s + 0.853·24-s − 0.687·25-s + 1.29·26-s − 0.192·27-s + 0.707·28-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.4472631916 |
L(21) |
≈ |
0.4472631916 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1+4.79T+8T2 |
| 5 | 1+6.25T+125T2 |
| 13 | 1+35.7T+2.19e3T2 |
| 17 | 1+133.T+4.91e3T2 |
| 19 | 1−161.T+6.85e3T2 |
| 23 | 1+66.2T+1.21e4T2 |
| 29 | 1+208.T+2.43e4T2 |
| 31 | 1+39.3T+2.97e4T2 |
| 37 | 1−197.T+5.06e4T2 |
| 41 | 1−434.T+6.89e4T2 |
| 43 | 1−375.T+7.95e4T2 |
| 47 | 1−503.T+1.03e5T2 |
| 53 | 1−44.8T+1.48e5T2 |
| 59 | 1−582.T+2.05e5T2 |
| 61 | 1−73.2T+2.26e5T2 |
| 67 | 1+928.T+3.00e5T2 |
| 71 | 1+755.T+3.57e5T2 |
| 73 | 1−277.T+3.89e5T2 |
| 79 | 1−651.T+4.93e5T2 |
| 83 | 1−282.T+5.71e5T2 |
| 89 | 1−1.04e3T+7.04e5T2 |
| 97 | 1−1.11e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42021745880362183088851150471, −10.81204534302661965064055944734, −9.613754558183303599836511308971, −9.020522549620414851049524799866, −7.63251803125824198541241949753, −7.29948424442187797992717648552, −5.87878725079517622421917049697, −4.29054404812829399476248449579, −2.20427854497176308652515261058, −0.63991171926699498756646470719,
0.63991171926699498756646470719, 2.20427854497176308652515261058, 4.29054404812829399476248449579, 5.87878725079517622421917049697, 7.29948424442187797992717648552, 7.63251803125824198541241949753, 9.020522549620414851049524799866, 9.613754558183303599836511308971, 10.81204534302661965064055944734, 11.42021745880362183088851150471