L(s) = 1 | + (0.446 − 0.324i)2-s + (0.927 + 2.85i)3-s + (−2.37 + 7.31i)4-s + (9.46 + 6.87i)5-s + (1.33 + 0.972i)6-s + (−2.16 + 6.65i)7-s + (2.67 + 8.23i)8-s + (−7.28 + 5.29i)9-s + 6.45·10-s + (35.2 + 9.37i)11-s − 23.0·12-s + (−7.29 + 5.30i)13-s + (1.19 + 3.67i)14-s + (−10.8 + 33.3i)15-s + (−45.9 − 33.3i)16-s + (17.8 + 12.9i)17-s + ⋯ |
L(s) = 1 | + (0.157 − 0.114i)2-s + (0.178 + 0.549i)3-s + (−0.297 + 0.914i)4-s + (0.846 + 0.615i)5-s + (0.0911 + 0.0661i)6-s + (−0.116 + 0.359i)7-s + (0.118 + 0.363i)8-s + (−0.269 + 0.195i)9-s + 0.204·10-s + (0.966 + 0.256i)11-s − 0.555·12-s + (−0.155 + 0.113i)13-s + (0.0227 + 0.0701i)14-s + (−0.186 + 0.574i)15-s + (−0.717 − 0.521i)16-s + (0.254 + 0.184i)17-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)(−0.612−0.790i)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)(−0.612−0.790i)Λ(1−s)
Degree: |
2 |
Conductor: |
231
= 3⋅7⋅11
|
Sign: |
−0.612−0.790i
|
Analytic conductor: |
13.6294 |
Root analytic conductor: |
3.69180 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ231(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 231, ( :3/2), −0.612−0.790i)
|
Particular Values
L(2) |
≈ |
0.890719+1.81622i |
L(21) |
≈ |
0.890719+1.81622i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.927−2.85i)T |
| 7 | 1+(2.16−6.65i)T |
| 11 | 1+(−35.2−9.37i)T |
good | 2 | 1+(−0.446+0.324i)T+(2.47−7.60i)T2 |
| 5 | 1+(−9.46−6.87i)T+(38.6+118.i)T2 |
| 13 | 1+(7.29−5.30i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−17.8−12.9i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(5.29+16.3i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1+69.0T+1.21e4T2 |
| 29 | 1+(−6.39+19.6i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(89.7−65.2i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(32.0−98.6i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(−31.8−98.0i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−170.T+7.95e4T2 |
| 47 | 1+(−93.0−286.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(57.0−41.4i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−194.+599.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−541.−393.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−653.T+3.00e5T2 |
| 71 | 1+(525.+381.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−33.4+102.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(409.−297.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(55.2+40.1i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+337.T+7.04e5T2 |
| 97 | 1+(−551.+400.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10295650452472430536258151754, −11.19480135110728817496700087254, −9.995297332327203315471834013883, −9.281362397389747340238875522146, −8.322884030807921405979746646266, −7.03668826037845681620216184824, −5.91462201383556693638299027211, −4.52239113021580842668951216785, −3.39941096718401197331260586270, −2.21530231553164432425640994422,
0.793759441732570591006067861387, 1.90983642047373156784121195562, 3.96131934551655119537486319606, 5.36652464527079758852245637880, 6.12332927921054366465847740405, 7.19053959848912613502865416008, 8.667804184526058781595787394077, 9.448028539862748958929752858936, 10.23385503319091800840478831964, 11.45839952140012230898999391910