L(s) = 1 | + (−0.992 + 0.721i)2-s + (−0.927 − 2.85i)3-s + (−2.00 + 6.17i)4-s + (2.71 + 1.97i)5-s + (2.97 + 2.16i)6-s + (2.16 − 6.65i)7-s + (−5.49 − 16.9i)8-s + (−7.28 + 5.29i)9-s − 4.12·10-s + (−36.1 − 4.60i)11-s + 19.4·12-s + (35.9 − 26.1i)13-s + (2.65 + 8.16i)14-s + (3.11 − 9.58i)15-s + (−24.3 − 17.7i)16-s + (26.8 + 19.5i)17-s + ⋯ |
L(s) = 1 | + (−0.350 + 0.254i)2-s + (−0.178 − 0.549i)3-s + (−0.250 + 0.772i)4-s + (0.243 + 0.176i)5-s + (0.202 + 0.147i)6-s + (0.116 − 0.359i)7-s + (−0.242 − 0.747i)8-s + (−0.269 + 0.195i)9-s − 0.130·10-s + (−0.991 − 0.126i)11-s + 0.468·12-s + (0.766 − 0.556i)13-s + (0.0506 + 0.155i)14-s + (0.0536 − 0.165i)15-s + (−0.380 − 0.276i)16-s + (0.383 + 0.278i)17-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)(0.711+0.702i)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)(0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
231
= 3⋅7⋅11
|
Sign: |
0.711+0.702i
|
Analytic conductor: |
13.6294 |
Root analytic conductor: |
3.69180 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ231(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 231, ( :3/2), 0.711+0.702i)
|
Particular Values
L(2) |
≈ |
1.03234−0.423584i |
L(21) |
≈ |
1.03234−0.423584i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.927+2.85i)T |
| 7 | 1+(−2.16+6.65i)T |
| 11 | 1+(36.1+4.60i)T |
good | 2 | 1+(0.992−0.721i)T+(2.47−7.60i)T2 |
| 5 | 1+(−2.71−1.97i)T+(38.6+118.i)T2 |
| 13 | 1+(−35.9+26.1i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−26.8−19.5i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(−21.1−65.1i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−65.7T+1.21e4T2 |
| 29 | 1+(−71.7+220.i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−222.+161.i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(−28.4+87.6i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(72.0+221.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−312.T+7.95e4T2 |
| 47 | 1+(107.+329.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(589.−428.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−215.+664.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−509.−370.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−1.09e3T+3.00e5T2 |
| 71 | 1+(125.+91.0i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(132.−408.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(216.−157.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(412.+299.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1−336.T+7.04e5T2 |
| 97 | 1+(844.−613.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.73833186568670048787825574289, −10.59666332297843147032453725847, −9.698763840605597378256135957508, −8.084720218668722568735417639421, −8.049155543698125403573515992906, −6.68574923210715411631755735674, −5.62985483899360334683928794269, −4.02036405449223873756691852379, −2.64800920015042330910806541821, −0.61478326401253917265736106591,
1.21893030690451184679945851773, 2.89551948313642977045980857811, 4.78484584843483998975453201971, 5.40519749643122449454399623835, 6.64248839427536515585785563829, 8.289786305467978316028018739532, 9.157000944692769059148598593778, 9.900863209099034932011388646940, 10.86771511601175594970209825907, 11.47032874445879945562619127569