L(s) = 1 | + (−2.72 + 1.97i)2-s + (0.927 + 2.85i)3-s + (1.03 − 3.18i)4-s + (6.94 + 5.04i)5-s + (−8.17 − 5.93i)6-s + (2.16 − 6.65i)7-s + (−4.84 − 14.9i)8-s + (−7.28 + 5.29i)9-s − 28.9·10-s + (25.6 − 25.9i)11-s + 10.0·12-s + (65.0 − 47.2i)13-s + (7.28 + 22.4i)14-s + (−7.95 + 24.4i)15-s + (64.3 + 46.7i)16-s + (−98.4 − 71.5i)17-s + ⋯ |
L(s) = 1 | + (−0.963 + 0.699i)2-s + (0.178 + 0.549i)3-s + (0.129 − 0.397i)4-s + (0.621 + 0.451i)5-s + (−0.556 − 0.404i)6-s + (0.116 − 0.359i)7-s + (−0.214 − 0.658i)8-s + (−0.269 + 0.195i)9-s − 0.914·10-s + (0.701 − 0.712i)11-s + 0.241·12-s + (1.38 − 1.00i)13-s + (0.139 + 0.428i)14-s + (−0.136 + 0.421i)15-s + (1.00 + 0.730i)16-s + (−1.40 − 1.02i)17-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)(0.990−0.140i)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)(0.990−0.140i)Λ(1−s)
Degree: |
2 |
Conductor: |
231
= 3⋅7⋅11
|
Sign: |
0.990−0.140i
|
Analytic conductor: |
13.6294 |
Root analytic conductor: |
3.69180 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ231(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 231, ( :3/2), 0.990−0.140i)
|
Particular Values
L(2) |
≈ |
1.10286+0.0777048i |
L(21) |
≈ |
1.10286+0.0777048i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.927−2.85i)T |
| 7 | 1+(−2.16+6.65i)T |
| 11 | 1+(−25.6+25.9i)T |
good | 2 | 1+(2.72−1.97i)T+(2.47−7.60i)T2 |
| 5 | 1+(−6.94−5.04i)T+(38.6+118.i)T2 |
| 13 | 1+(−65.0+47.2i)T+(678.−2.08e3i)T2 |
| 17 | 1+(98.4+71.5i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(41.5+127.i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−9.39T+1.21e4T2 |
| 29 | 1+(−12.2+37.6i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(21.8−15.8i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(−107.+329.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(−134.−413.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−51.0T+7.95e4T2 |
| 47 | 1+(−132.−406.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(430.−312.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−154.+475.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−226.−164.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1+145.T+3.00e5T2 |
| 71 | 1+(45.4+33.0i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−78.4+241.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(−260.+188.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(347.+252.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+636.T+7.04e5T2 |
| 97 | 1+(−1.34e3+979.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16446285175321323506115991229, −10.76721163159528796914081810464, −9.449014829414120265122812310270, −8.952895512990913764788739268793, −7.985904185577284965067053362327, −6.72770447291987879105032576966, −6.02159460123983235997693638109, −4.29094329920643348827903974096, −2.90677091615609957069865803946, −0.64999170425687709831318753249,
1.50237329657810055092943555537, 1.95544186373615466844308772915, 4.01658835956333103624552222434, 5.75007416284251125633145318207, 6.66628928337810556522661167562, 8.339383314166130830350161130968, 8.820619542530787980155424953463, 9.638408109391464886717530447851, 10.72695764256582608586271770235, 11.60129463469179839497127075376