L(s) = 1 | + (−0.5 − 0.363i)2-s + (−0.309 + 0.951i)3-s + (−0.5 − 1.53i)4-s + (1.30 − 0.951i)5-s + (0.5 − 0.363i)6-s + (−0.309 − 0.951i)7-s + (−0.690 + 2.12i)8-s + (−0.809 − 0.587i)9-s − 10-s + (1.69 − 2.85i)11-s + 1.61·12-s + (−3.42 − 2.48i)13-s + (−0.190 + 0.587i)14-s + (0.499 + 1.53i)15-s + (−1.49 + 1.08i)16-s + (2.80 − 2.04i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.256i)2-s + (−0.178 + 0.549i)3-s + (−0.250 − 0.769i)4-s + (0.585 − 0.425i)5-s + (0.204 − 0.148i)6-s + (−0.116 − 0.359i)7-s + (−0.244 + 0.751i)8-s + (−0.269 − 0.195i)9-s − 0.316·10-s + (0.509 − 0.860i)11-s + 0.467·12-s + (−0.950 − 0.690i)13-s + (−0.0510 + 0.157i)14-s + (0.129 + 0.397i)15-s + (−0.374 + 0.272i)16-s + (0.681 − 0.494i)17-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)(0.116+0.993i)Λ(2−s)
Λ(s)=(=(231s/2ΓC(s+1/2)L(s)(0.116+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
231
= 3⋅7⋅11
|
Sign: |
0.116+0.993i
|
Analytic conductor: |
1.84454 |
Root analytic conductor: |
1.35814 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ231(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 231, ( :1/2), 0.116+0.993i)
|
Particular Values
L(1) |
≈ |
0.685093−0.609235i |
L(21) |
≈ |
0.685093−0.609235i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309−0.951i)T |
| 7 | 1+(0.309+0.951i)T |
| 11 | 1+(−1.69+2.85i)T |
good | 2 | 1+(0.5+0.363i)T+(0.618+1.90i)T2 |
| 5 | 1+(−1.30+0.951i)T+(1.54−4.75i)T2 |
| 13 | 1+(3.42+2.48i)T+(4.01+12.3i)T2 |
| 17 | 1+(−2.80+2.04i)T+(5.25−16.1i)T2 |
| 19 | 1+(−2+6.15i)T+(−15.3−11.1i)T2 |
| 23 | 1−5.70T+23T2 |
| 29 | 1+(0.0729+0.224i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.42+1.76i)T+(9.57+29.4i)T2 |
| 37 | 1+(−1.85−5.70i)T+(−29.9+21.7i)T2 |
| 41 | 1+(3.04−9.37i)T+(−33.1−24.0i)T2 |
| 43 | 1+11.4T+43T2 |
| 47 | 1+(1.59−4.89i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−10.1−7.38i)T+(16.3+50.4i)T2 |
| 59 | 1+(1.42+4.39i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−6.42+4.66i)T+(18.8−58.0i)T2 |
| 67 | 1−13.2T+67T2 |
| 71 | 1+(−3.66+2.66i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.28−7.02i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−4.92−3.57i)T+(24.4+75.1i)T2 |
| 83 | 1+(6.85−4.97i)T+(25.6−78.9i)T2 |
| 89 | 1−1.32T+89T2 |
| 97 | 1+(−4.28−3.11i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59345535780682501524068540869, −10.95993559539669512538554486855, −9.727981012917189621149053394049, −9.531046756295636685489740233683, −8.369403849185161650183502390131, −6.79245754156162379511386081365, −5.46051370661874869784941089377, −4.89309863858823884918400045961, −3.00778686719332393471852774768, −0.921556623080204601596263201403,
2.09350870517998568886041453917, 3.69132467307026662966969430440, 5.32247828989768773616474982148, 6.68999949061032228405522961418, 7.28940874036668505933297838907, 8.428063946224317755795563440833, 9.486606065151950118578990536405, 10.22657074812975423694318445227, 11.88520573551656959164564504727, 12.26666157060904168190158223651