L(s) = 1 | + (1.93 + 1.40i)2-s + (−0.309 + 0.951i)3-s + (1.14 + 3.53i)4-s + (2.09 − 1.52i)5-s + (−1.93 + 1.40i)6-s + (−0.309 − 0.951i)7-s + (−1.26 + 3.89i)8-s + (−0.809 − 0.587i)9-s + 6.19·10-s + (−2.19 + 2.48i)11-s − 3.71·12-s + (−5.48 − 3.98i)13-s + (0.738 − 2.27i)14-s + (0.800 + 2.46i)15-s + (−1.91 + 1.38i)16-s + (2.54 − 1.84i)17-s + ⋯ |
L(s) = 1 | + (1.36 + 0.993i)2-s + (−0.178 + 0.549i)3-s + (0.573 + 1.76i)4-s + (0.937 − 0.680i)5-s + (−0.789 + 0.573i)6-s + (−0.116 − 0.359i)7-s + (−0.447 + 1.37i)8-s + (−0.269 − 0.195i)9-s + 1.95·10-s + (−0.660 + 0.750i)11-s − 1.07·12-s + (−1.52 − 1.10i)13-s + (0.197 − 0.607i)14-s + (0.206 + 0.635i)15-s + (−0.477 + 0.347i)16-s + (0.617 − 0.448i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0694 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0694 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.76470 + 1.64607i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76470 + 1.64607i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (2.19 - 2.48i)T \) |
good | 2 | \( 1 + (-1.93 - 1.40i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-2.09 + 1.52i)T + (1.54 - 4.75i)T^{2} \) |
| 13 | \( 1 + (5.48 + 3.98i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.54 + 1.84i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.323 - 0.994i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 6.52T + 23T^{2} \) |
| 29 | \( 1 + (0.187 + 0.577i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-7.14 - 5.19i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.76 - 8.50i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.68 + 8.27i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 4.48T + 43T^{2} \) |
| 47 | \( 1 + (-1.00 + 3.10i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (1.53 + 1.11i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.0537 + 0.165i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (6.58 - 4.78i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 7.33T + 67T^{2} \) |
| 71 | \( 1 + (2.18 - 1.59i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.182 - 0.561i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.93 - 5.76i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (7.07 - 5.14i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 11.6T + 89T^{2} \) |
| 97 | \( 1 + (9.58 + 6.96i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.52479198209999695933161606525, −12.14738900534197005417811173208, −10.19934800962446046832581985443, −9.800666388359149410125039333038, −8.104348547723287483056875811544, −7.20370829345358660263463881052, −5.85655699414096987888690982779, −5.18651653818261368267183667592, −4.43108838161651007602865742567, −2.80957941502296216669868667512,
2.09664307140790738987860306724, 2.79867750132441243865181102732, 4.47457503547231273357968849532, 5.77053156356872025649091120115, 6.27728051623974454152427226003, 7.76651433266631817888500822588, 9.564886732528583668366910094351, 10.33895500937191667867869773257, 11.31842862709336214714387439788, 12.11628468005586752217530211780