L(s) = 1 | + (1.93 + 1.40i)2-s + (−0.309 + 0.951i)3-s + (1.14 + 3.53i)4-s + (2.09 − 1.52i)5-s + (−1.93 + 1.40i)6-s + (−0.309 − 0.951i)7-s + (−1.26 + 3.89i)8-s + (−0.809 − 0.587i)9-s + 6.19·10-s + (−2.19 + 2.48i)11-s − 3.71·12-s + (−5.48 − 3.98i)13-s + (0.738 − 2.27i)14-s + (0.800 + 2.46i)15-s + (−1.91 + 1.38i)16-s + (2.54 − 1.84i)17-s + ⋯ |
L(s) = 1 | + (1.36 + 0.993i)2-s + (−0.178 + 0.549i)3-s + (0.573 + 1.76i)4-s + (0.937 − 0.680i)5-s + (−0.789 + 0.573i)6-s + (−0.116 − 0.359i)7-s + (−0.447 + 1.37i)8-s + (−0.269 − 0.195i)9-s + 1.95·10-s + (−0.660 + 0.750i)11-s − 1.07·12-s + (−1.52 − 1.10i)13-s + (0.197 − 0.607i)14-s + (0.206 + 0.635i)15-s + (−0.477 + 0.347i)16-s + (0.617 − 0.448i)17-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)(0.0694−0.997i)Λ(2−s)
Λ(s)=(=(231s/2ΓC(s+1/2)L(s)(0.0694−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
231
= 3⋅7⋅11
|
Sign: |
0.0694−0.997i
|
Analytic conductor: |
1.84454 |
Root analytic conductor: |
1.35814 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ231(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 231, ( :1/2), 0.0694−0.997i)
|
Particular Values
L(1) |
≈ |
1.76470+1.64607i |
L(21) |
≈ |
1.76470+1.64607i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.309−0.951i)T |
| 7 | 1+(0.309+0.951i)T |
| 11 | 1+(2.19−2.48i)T |
good | 2 | 1+(−1.93−1.40i)T+(0.618+1.90i)T2 |
| 5 | 1+(−2.09+1.52i)T+(1.54−4.75i)T2 |
| 13 | 1+(5.48+3.98i)T+(4.01+12.3i)T2 |
| 17 | 1+(−2.54+1.84i)T+(5.25−16.1i)T2 |
| 19 | 1+(0.323−0.994i)T+(−15.3−11.1i)T2 |
| 23 | 1+6.52T+23T2 |
| 29 | 1+(0.187+0.577i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−7.14−5.19i)T+(9.57+29.4i)T2 |
| 37 | 1+(−2.76−8.50i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−2.68+8.27i)T+(−33.1−24.0i)T2 |
| 43 | 1−4.48T+43T2 |
| 47 | 1+(−1.00+3.10i)T+(−38.0−27.6i)T2 |
| 53 | 1+(1.53+1.11i)T+(16.3+50.4i)T2 |
| 59 | 1+(0.0537+0.165i)T+(−47.7+34.6i)T2 |
| 61 | 1+(6.58−4.78i)T+(18.8−58.0i)T2 |
| 67 | 1+7.33T+67T2 |
| 71 | 1+(2.18−1.59i)T+(21.9−67.5i)T2 |
| 73 | 1+(−0.182−0.561i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−7.93−5.76i)T+(24.4+75.1i)T2 |
| 83 | 1+(7.07−5.14i)T+(25.6−78.9i)T2 |
| 89 | 1+11.6T+89T2 |
| 97 | 1+(9.58+6.96i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.52479198209999695933161606525, −12.14738900534197005417811173208, −10.19934800962446046832581985443, −9.800666388359149410125039333038, −8.104348547723287483056875811544, −7.20370829345358660263463881052, −5.85655699414096987888690982779, −5.18651653818261368267183667592, −4.43108838161651007602865742567, −2.80957941502296216669868667512,
2.09664307140790738987860306724, 2.79867750132441243865181102732, 4.47457503547231273357968849532, 5.77053156356872025649091120115, 6.27728051623974454152427226003, 7.76651433266631817888500822588, 9.564886732528583668366910094351, 10.33895500937191667867869773257, 11.31842862709336214714387439788, 12.11628468005586752217530211780