Properties

Label 2-2312-1.1-c1-0-37
Degree $2$
Conductor $2312$
Sign $-1$
Analytic cond. $18.4614$
Root an. cond. $4.29667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·3-s − 2·5-s + 1.23·7-s − 1.47·9-s + 1.23·11-s + 4.47·13-s + 2.47·15-s − 6.47·19-s − 1.52·21-s + 1.23·23-s − 25-s + 5.52·27-s − 2·29-s − 1.23·31-s − 1.52·33-s − 2.47·35-s + 10.9·37-s − 5.52·39-s − 2·41-s − 1.52·43-s + 2.94·45-s + 12.9·47-s − 5.47·49-s − 2·53-s − 2.47·55-s + 8.00·57-s + 14.4·59-s + ⋯
L(s)  = 1  − 0.713·3-s − 0.894·5-s + 0.467·7-s − 0.490·9-s + 0.372·11-s + 1.24·13-s + 0.638·15-s − 1.48·19-s − 0.333·21-s + 0.257·23-s − 0.200·25-s + 1.06·27-s − 0.371·29-s − 0.222·31-s − 0.265·33-s − 0.417·35-s + 1.79·37-s − 0.885·39-s − 0.312·41-s − 0.232·43-s + 0.438·45-s + 1.88·47-s − 0.781·49-s − 0.274·53-s − 0.333·55-s + 1.05·57-s + 1.88·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(18.4614\)
Root analytic conductor: \(4.29667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 + 1.23T + 3T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
7 \( 1 - 1.23T + 7T^{2} \)
11 \( 1 - 1.23T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 - 1.23T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 1.23T + 31T^{2} \)
37 \( 1 - 10.9T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 1.52T + 43T^{2} \)
47 \( 1 - 12.9T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 14.4T + 59T^{2} \)
61 \( 1 + 6.94T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 9.23T + 71T^{2} \)
73 \( 1 + 14.9T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 - 1.52T + 83T^{2} \)
89 \( 1 + 7.52T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.530331281265960957245710013040, −7.968654378424625052964344745597, −7.01440553160506986767525306197, −6.14932349097873625968388235514, −5.63225662549928117828236169746, −4.41998737654410291314220734517, −3.97545217050221942522207015573, −2.76966127457592119584350767723, −1.33929233782949975948073200617, 0, 1.33929233782949975948073200617, 2.76966127457592119584350767723, 3.97545217050221942522207015573, 4.41998737654410291314220734517, 5.63225662549928117828236169746, 6.14932349097873625968388235514, 7.01440553160506986767525306197, 7.968654378424625052964344745597, 8.530331281265960957245710013040

Graph of the $Z$-function along the critical line