L(s) = 1 | + (0.923 − 0.382i)2-s + (−1.38 − 0.275i)3-s + (0.707 − 0.707i)4-s + (0.785 + 1.17i)5-s + (−1.38 + 0.275i)6-s + (0.382 − 0.923i)8-s + (0.923 + 0.382i)9-s + (1.17 + 0.785i)10-s + (−0.275 − 1.38i)11-s + (−1.17 + 0.785i)12-s + (−0.765 − 1.84i)15-s − i·16-s + 1.00·18-s + (1.38 + 0.275i)20-s + (−0.785 − 1.17i)22-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)2-s + (−1.38 − 0.275i)3-s + (0.707 − 0.707i)4-s + (0.785 + 1.17i)5-s + (−1.38 + 0.275i)6-s + (0.382 − 0.923i)8-s + (0.923 + 0.382i)9-s + (1.17 + 0.785i)10-s + (−0.275 − 1.38i)11-s + (−1.17 + 0.785i)12-s + (−0.765 − 1.84i)15-s − i·16-s + 1.00·18-s + (1.38 + 0.275i)20-s + (−0.785 − 1.17i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.547 + 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.547 + 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.520111881\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.520111881\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 + 0.382i)T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (1.38 + 0.275i)T + (0.923 + 0.382i)T^{2} \) |
| 5 | \( 1 + (-0.785 - 1.17i)T + (-0.382 + 0.923i)T^{2} \) |
| 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.275 + 1.38i)T + (-0.923 + 0.382i)T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 29 | \( 1 + (-1.17 + 0.785i)T + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 37 | \( 1 + (-1.38 - 0.275i)T + (0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 53 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (1.17 + 0.785i)T + (0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 97 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.454760604998067266137052746162, −8.061048267830700623960537375438, −7.02409678212267649719842118029, −6.28363936886311859290776790836, −6.04564996988760530947995011520, −5.35679382313591752778950869288, −4.37236869105741978521417461022, −3.15184155752647877895460746687, −2.47131333488509343314237022326, −1.03142506491805876867180302776,
1.40955993954904325434531075136, 2.59885851929045114096261294468, 4.26749140761956420035970812603, 4.68862143437233661927470517832, 5.35160619479713017174257202848, 5.89273273849261947512082712250, 6.69486360510665435155972290842, 7.47145072533523048041440103431, 8.495956411575299680334121017521, 9.388882962092775753454889595596