L(s) = 1 | + (−0.707 − 0.707i)2-s + (1.70 − 0.707i)3-s + 1.00i·4-s + (−1.70 − 0.707i)6-s + (0.707 − 0.707i)8-s + (1.70 − 1.70i)9-s + (0.707 + 0.292i)11-s + (0.707 + 1.70i)12-s − 1.00·16-s − 2.41·18-s + (−0.292 − 0.707i)22-s + (0.707 − 1.70i)24-s + (−0.707 + 0.707i)25-s + (1 − 2.41i)27-s + (0.707 + 0.707i)32-s + 1.41·33-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (1.70 − 0.707i)3-s + 1.00i·4-s + (−1.70 − 0.707i)6-s + (0.707 − 0.707i)8-s + (1.70 − 1.70i)9-s + (0.707 + 0.292i)11-s + (0.707 + 1.70i)12-s − 1.00·16-s − 2.41·18-s + (−0.292 − 0.707i)22-s + (0.707 − 1.70i)24-s + (−0.707 + 0.707i)25-s + (1 − 2.41i)27-s + (0.707 + 0.707i)32-s + 1.41·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.571821570\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.571821570\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (1 - i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (-1 + i)T - iT^{2} \) |
| 61 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + 1.41T + T^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (1 + i)T + iT^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.890072064139182856523573310264, −8.447135252715430213826434114060, −7.68534878569063562399281703497, −7.12835295941193555846896152249, −6.34637614902398797808182370126, −4.59098983523544564650247213987, −3.65224399183689659399527434535, −3.08410673378737922795376858486, −2.04232486294526781223947110950, −1.37761334328459750343212868521,
1.60543567120606853694421140740, 2.58272514617523842700937268225, 3.70656030308122473694639630299, 4.42680192249420259974834607908, 5.42563285977996062016900677346, 6.51723127441433228835649692264, 7.33087842898893887459740485987, 8.052315243573968231543283636121, 8.644220759694103909520191606888, 9.131558060590437169432217324578