L(s) = 1 | + (−0.781 − 0.623i)5-s + (0.623 + 0.781i)9-s + (0.211 + 1.87i)13-s − 0.445i·17-s + (0.222 + 0.974i)25-s + (−0.781 − 0.623i)29-s + (0.541 + 0.678i)37-s + (1.33 + 1.33i)41-s − 0.999i·45-s + (0.781 − 0.623i)49-s + (−0.900 + 1.43i)53-s + (1.59 − 0.559i)61-s + (1.00 − 1.59i)65-s + (1.90 + 0.433i)73-s + (−0.222 + 0.974i)81-s + ⋯ |
L(s) = 1 | + (−0.781 − 0.623i)5-s + (0.623 + 0.781i)9-s + (0.211 + 1.87i)13-s − 0.445i·17-s + (0.222 + 0.974i)25-s + (−0.781 − 0.623i)29-s + (0.541 + 0.678i)37-s + (1.33 + 1.33i)41-s − 0.999i·45-s + (0.781 − 0.623i)49-s + (−0.900 + 1.43i)53-s + (1.59 − 0.559i)61-s + (1.00 − 1.59i)65-s + (1.90 + 0.433i)73-s + (−0.222 + 0.974i)81-s + ⋯ |
Λ(s)=(=(2320s/2ΓC(s)L(s)(0.784−0.619i)Λ(1−s)
Λ(s)=(=(2320s/2ΓC(s)L(s)(0.784−0.619i)Λ(1−s)
Degree: |
2 |
Conductor: |
2320
= 24⋅5⋅29
|
Sign: |
0.784−0.619i
|
Analytic conductor: |
1.15783 |
Root analytic conductor: |
1.07602 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2320(1743,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2320, ( :0), 0.784−0.619i)
|
Particular Values
L(21) |
≈ |
1.036875580 |
L(21) |
≈ |
1.036875580 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.781+0.623i)T |
| 29 | 1+(0.781+0.623i)T |
good | 3 | 1+(−0.623−0.781i)T2 |
| 7 | 1+(−0.781+0.623i)T2 |
| 11 | 1+(0.974−0.222i)T2 |
| 13 | 1+(−0.211−1.87i)T+(−0.974+0.222i)T2 |
| 17 | 1+0.445iT−T2 |
| 19 | 1+(−0.781−0.623i)T2 |
| 23 | 1+(−0.433+0.900i)T2 |
| 31 | 1+(−0.433−0.900i)T2 |
| 37 | 1+(−0.541−0.678i)T+(−0.222+0.974i)T2 |
| 41 | 1+(−1.33−1.33i)T+iT2 |
| 43 | 1+(0.900+0.433i)T2 |
| 47 | 1+(0.222+0.974i)T2 |
| 53 | 1+(0.900−1.43i)T+(−0.433−0.900i)T2 |
| 59 | 1+T2 |
| 61 | 1+(−1.59+0.559i)T+(0.781−0.623i)T2 |
| 67 | 1+(0.974+0.222i)T2 |
| 71 | 1+(−0.222−0.974i)T2 |
| 73 | 1+(−1.90−0.433i)T+(0.900+0.433i)T2 |
| 79 | 1+(0.974+0.222i)T2 |
| 83 | 1+(−0.781−0.623i)T2 |
| 89 | 1+(−1.05+1.68i)T+(−0.433−0.900i)T2 |
| 97 | 1+(1.62−0.781i)T+(0.623−0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.330950453339572598535624550307, −8.446365777188569968629500470860, −7.72793778981727250505910773604, −7.09884278184248528900780446618, −6.24231501506850554212907137588, −5.08113324575349435818295695005, −4.41271792380512078789620648649, −3.85439692142547285669532824514, −2.41273856180707817060281610102, −1.33564074870340698000494528881,
0.808527199387539425724671641099, 2.47268035570756624707280087695, 3.54198594443047290609996824488, 3.93672083381781090002111122143, 5.21988430550303855016514660077, 6.02678347620048283737958884164, 6.88608234712598415581696774790, 7.60799848381889434301728536154, 8.157120858125783819939897285282, 9.094755600018557613281336230325