L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 7-s + 8-s + 9-s + 4·11-s − 12-s − 13-s + 14-s + 16-s − 17-s + 18-s + 4·19-s − 21-s + 4·22-s + 4·23-s − 24-s − 26-s − 27-s + 28-s − 2·29-s + 8·31-s + 32-s − 4·33-s − 34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.917·19-s − 0.218·21-s + 0.852·22-s + 0.834·23-s − 0.204·24-s − 0.196·26-s − 0.192·27-s + 0.188·28-s − 0.371·29-s + 1.43·31-s + 0.176·32-s − 0.696·33-s − 0.171·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 232050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 232050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.986309482\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.986309482\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 + T \) |
good | 11 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 10 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 2 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.93644801926993, −12.41867443137779, −11.85588096359894, −11.69686320608495, −11.11874057615837, −10.94359122692321, −10.09236011645028, −9.750826349963517, −9.290931745757348, −8.696369960313880, −8.145359904032775, −7.503332289257483, −7.181704406226293, −6.551381354135759, −6.265972824955992, −5.640234827141397, −5.194561397690396, −4.646640457146668, −4.213554530877636, −3.764914652328716, −3.025481282162288, −2.511272650964124, −1.811014997634654, −1.023487934263096, −0.7536124537809807,
0.7536124537809807, 1.023487934263096, 1.811014997634654, 2.511272650964124, 3.025481282162288, 3.764914652328716, 4.213554530877636, 4.646640457146668, 5.194561397690396, 5.640234827141397, 6.265972824955992, 6.551381354135759, 7.181704406226293, 7.503332289257483, 8.145359904032775, 8.696369960313880, 9.290931745757348, 9.750826349963517, 10.09236011645028, 10.94359122692321, 11.11874057615837, 11.69686320608495, 11.85588096359894, 12.41867443137779, 12.93644801926993