L(s) = 1 | − 2-s + 4-s − 2·5-s − 2·7-s − 8-s + 2·10-s − 4·11-s − 13-s + 2·14-s + 16-s − 6·19-s − 2·20-s + 4·22-s + 4·23-s − 25-s + 26-s − 2·28-s − 8·29-s − 2·31-s − 32-s + 4·35-s + 6·37-s + 6·38-s + 2·40-s + 6·41-s − 8·43-s − 4·44-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.755·7-s − 0.353·8-s + 0.632·10-s − 1.20·11-s − 0.277·13-s + 0.534·14-s + 1/4·16-s − 1.37·19-s − 0.447·20-s + 0.852·22-s + 0.834·23-s − 1/5·25-s + 0.196·26-s − 0.377·28-s − 1.48·29-s − 0.359·31-s − 0.176·32-s + 0.676·35-s + 0.986·37-s + 0.973·38-s + 0.316·40-s + 0.937·41-s − 1.21·43-s − 0.603·44-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1+2T+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+4T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+8T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48471457324402872742962494510, −10.70725444808913514749917450090, −9.773699703719295926726447008045, −8.695739660347841822203445826112, −7.76516545555292037952264969735, −6.93707785293490008685942511031, −5.59584593532556316161391417712, −3.99394475360161838020150844401, −2.57523735650192716532994366231, 0,
2.57523735650192716532994366231, 3.99394475360161838020150844401, 5.59584593532556316161391417712, 6.93707785293490008685942511031, 7.76516545555292037952264969735, 8.695739660347841822203445826112, 9.773699703719295926726447008045, 10.70725444808913514749917450090, 11.48471457324402872742962494510