L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.539 − 1.64i)3-s − 1.00i·4-s + (3.04 + 0.817i)5-s + (−1.54 − 0.781i)6-s + (2.84 + 0.761i)7-s + (−0.707 − 0.707i)8-s + (−2.41 + 1.77i)9-s + (2.73 − 1.57i)10-s + (−0.616 − 0.616i)11-s + (−1.64 + 0.539i)12-s + (−3.08 − 1.86i)13-s + (2.54 − 1.47i)14-s + (−0.301 − 5.45i)15-s − 1.00·16-s + (−1.80 + 3.11i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.311 − 0.950i)3-s − 0.500i·4-s + (1.36 + 0.365i)5-s + (−0.630 − 0.319i)6-s + (1.07 + 0.287i)7-s + (−0.250 − 0.250i)8-s + (−0.805 + 0.592i)9-s + (0.864 − 0.499i)10-s + (−0.185 − 0.185i)11-s + (−0.475 + 0.155i)12-s + (−0.855 − 0.517i)13-s + (0.681 − 0.393i)14-s + (−0.0779 − 1.40i)15-s − 0.250·16-s + (−0.436 + 0.756i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.214+0.976i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.214+0.976i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.214+0.976i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.214+0.976i)
|
Particular Values
L(1) |
≈ |
1.35979−1.09315i |
L(21) |
≈ |
1.35979−1.09315i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1+(0.539+1.64i)T |
| 13 | 1+(3.08+1.86i)T |
good | 5 | 1+(−3.04−0.817i)T+(4.33+2.5i)T2 |
| 7 | 1+(−2.84−0.761i)T+(6.06+3.5i)T2 |
| 11 | 1+(0.616+0.616i)T+11iT2 |
| 17 | 1+(1.80−3.11i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.90−1.31i)T+(16.4−9.5i)T2 |
| 23 | 1+(−1.86+3.23i)T+(−11.5−19.9i)T2 |
| 29 | 1−8.59iT−29T2 |
| 31 | 1+(−1.33+4.96i)T+(−26.8−15.5i)T2 |
| 37 | 1+(5.77+1.54i)T+(32.0+18.5i)T2 |
| 41 | 1+(−2.82−10.5i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−5.48+3.16i)T+(21.5−37.2i)T2 |
| 47 | 1+(−6.10+1.63i)T+(40.7−23.5i)T2 |
| 53 | 1−6.73iT−53T2 |
| 59 | 1+(3.89+3.89i)T+59iT2 |
| 61 | 1+(3.18+5.51i)T+(−30.5+52.8i)T2 |
| 67 | 1+(7.99−2.14i)T+(58.0−33.5i)T2 |
| 71 | 1+(1.65+6.19i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−10.6+10.6i)T−73iT2 |
| 79 | 1+(1.30−2.26i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−2.96−11.0i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−2.10+7.84i)T+(−77.0−44.5i)T2 |
| 97 | 1+(4.37−16.3i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.22792732146792045695025667891, −10.86352981788142585525049086243, −10.57563790095798019752726276539, −9.075173008670494226460023339957, −7.956942369715327797262414112027, −6.60078136649432439358627436650, −5.76426011015337419441678555328, −4.84884714509496938914410382114, −2.58719998429962459162531902816, −1.73660209323026482743477279687,
2.32705024925811297536814991884, 4.37252847207909906343890767438, 5.02568661355280824123589429612, 5.93776891768198565088241423186, 7.19386216674122025712352325849, 8.661858524750460977471696250755, 9.450182168605179404831457886954, 10.42807411469472661708284037998, 11.39813453206621867688886799395, 12.40564105162204584446888190964