L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.539 − 1.64i)3-s − 1.00i·4-s + (3.04 + 0.817i)5-s + (−1.54 − 0.781i)6-s + (2.84 + 0.761i)7-s + (−0.707 − 0.707i)8-s + (−2.41 + 1.77i)9-s + (2.73 − 1.57i)10-s + (−0.616 − 0.616i)11-s + (−1.64 + 0.539i)12-s + (−3.08 − 1.86i)13-s + (2.54 − 1.47i)14-s + (−0.301 − 5.45i)15-s − 1.00·16-s + (−1.80 + 3.11i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.311 − 0.950i)3-s − 0.500i·4-s + (1.36 + 0.365i)5-s + (−0.630 − 0.319i)6-s + (1.07 + 0.287i)7-s + (−0.250 − 0.250i)8-s + (−0.805 + 0.592i)9-s + (0.864 − 0.499i)10-s + (−0.185 − 0.185i)11-s + (−0.475 + 0.155i)12-s + (−0.855 − 0.517i)13-s + (0.681 − 0.393i)14-s + (−0.0779 − 1.40i)15-s − 0.250·16-s + (−0.436 + 0.756i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.214 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.214 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35979 - 1.09315i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35979 - 1.09315i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.539 + 1.64i)T \) |
| 13 | \( 1 + (3.08 + 1.86i)T \) |
good | 5 | \( 1 + (-3.04 - 0.817i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.84 - 0.761i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (0.616 + 0.616i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.80 - 3.11i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.90 - 1.31i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.86 + 3.23i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.59iT - 29T^{2} \) |
| 31 | \( 1 + (-1.33 + 4.96i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (5.77 + 1.54i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.82 - 10.5i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-5.48 + 3.16i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.10 + 1.63i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 - 6.73iT - 53T^{2} \) |
| 59 | \( 1 + (3.89 + 3.89i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.18 + 5.51i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.99 - 2.14i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (1.65 + 6.19i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-10.6 + 10.6i)T - 73iT^{2} \) |
| 79 | \( 1 + (1.30 - 2.26i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.96 - 11.0i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-2.10 + 7.84i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (4.37 - 16.3i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.22792732146792045695025667891, −10.86352981788142585525049086243, −10.57563790095798019752726276539, −9.075173008670494226460023339957, −7.956942369715327797262414112027, −6.60078136649432439358627436650, −5.76426011015337419441678555328, −4.84884714509496938914410382114, −2.58719998429962459162531902816, −1.73660209323026482743477279687,
2.32705024925811297536814991884, 4.37252847207909906343890767438, 5.02568661355280824123589429612, 5.93776891768198565088241423186, 7.19386216674122025712352325849, 8.661858524750460977471696250755, 9.450182168605179404831457886954, 10.42807411469472661708284037998, 11.39813453206621867688886799395, 12.40564105162204584446888190964