L(s) = 1 | + (−0.866 − 0.5i)2-s + (−1.62 − 0.612i)3-s + (0.499 + 0.866i)4-s + (0.548 − 0.316i)5-s + (1.09 + 1.34i)6-s + (−2.15 − 1.24i)7-s − 0.999i·8-s + (2.24 + 1.98i)9-s − 0.633·10-s + (−4.20 − 2.43i)11-s + (−0.279 − 1.70i)12-s + (−0.541 + 3.56i)13-s + (1.24 + 2.15i)14-s + (−1.08 + 0.176i)15-s + (−0.5 + 0.866i)16-s − 6.27·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.935 − 0.353i)3-s + (0.249 + 0.433i)4-s + (0.245 − 0.141i)5-s + (0.447 + 0.547i)6-s + (−0.814 − 0.469i)7-s − 0.353i·8-s + (0.749 + 0.661i)9-s − 0.200·10-s + (−1.26 − 0.732i)11-s + (−0.0806 − 0.493i)12-s + (−0.150 + 0.988i)13-s + (0.332 + 0.575i)14-s + (−0.279 + 0.0456i)15-s + (−0.125 + 0.216i)16-s − 1.52·17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.865−0.501i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(−0.865−0.501i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.865−0.501i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), −0.865−0.501i)
|
Particular Values
L(1) |
≈ |
0.0164801+0.0613559i |
L(21) |
≈ |
0.0164801+0.0613559i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1+(1.62+0.612i)T |
| 13 | 1+(0.541−3.56i)T |
good | 5 | 1+(−0.548+0.316i)T+(2.5−4.33i)T2 |
| 7 | 1+(2.15+1.24i)T+(3.5+6.06i)T2 |
| 11 | 1+(4.20+2.43i)T+(5.5+9.52i)T2 |
| 17 | 1+6.27T+17T2 |
| 19 | 1−4.86iT−19T2 |
| 23 | 1+(1.77+3.07i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.415+0.719i)T+(−14.5−25.1i)T2 |
| 31 | 1+(3.73−2.15i)T+(15.5−26.8i)T2 |
| 37 | 1+7.81iT−37T2 |
| 41 | 1+(−0.0678+0.0391i)T+(20.5−35.5i)T2 |
| 43 | 1+(−4.84+8.38i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−4.30−2.48i)T+(23.5+40.7i)T2 |
| 53 | 1+6.36T+53T2 |
| 59 | 1+(−7.86+4.54i)T+(29.5−51.0i)T2 |
| 61 | 1+(−5.28+9.15i)T+(−30.5−52.8i)T2 |
| 67 | 1+(6.82−3.94i)T+(33.5−58.0i)T2 |
| 71 | 1−12.3iT−71T2 |
| 73 | 1+1.05iT−73T2 |
| 79 | 1+(1.68−2.92i)T+(−39.5−68.4i)T2 |
| 83 | 1+(13.1+7.60i)T+(41.5+71.8i)T2 |
| 89 | 1−0.595iT−89T2 |
| 97 | 1+(−14.7−8.53i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39163348368467541403563190173, −10.70339795454305204597829738759, −9.912805738789492771777381513699, −8.777664799135788031412956359408, −7.52224730974668955739434666437, −6.61106315231499250004758337136, −5.56263424046431513599858521928, −4.01154176665103283429830954797, −2.12506133563451912212272979153, −0.06472313265520329611322090094,
2.60166767609160998247309073477, 4.67918804309072372810674431570, 5.72773206966556483602269880846, 6.61782482537019609845335985198, 7.66549485121842706128334343858, 9.074201843266751410366535498106, 9.941389183062139354725683164570, 10.58487075639055986094949724080, 11.55685884376098180003160271863, 12.76352972109650081417696104440