L(s) = 1 | + (−0.866 − 0.5i)2-s + (−1.62 − 0.612i)3-s + (0.499 + 0.866i)4-s + (0.548 − 0.316i)5-s + (1.09 + 1.34i)6-s + (−2.15 − 1.24i)7-s − 0.999i·8-s + (2.24 + 1.98i)9-s − 0.633·10-s + (−4.20 − 2.43i)11-s + (−0.279 − 1.70i)12-s + (−0.541 + 3.56i)13-s + (1.24 + 2.15i)14-s + (−1.08 + 0.176i)15-s + (−0.5 + 0.866i)16-s − 6.27·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.935 − 0.353i)3-s + (0.249 + 0.433i)4-s + (0.245 − 0.141i)5-s + (0.447 + 0.547i)6-s + (−0.814 − 0.469i)7-s − 0.353i·8-s + (0.749 + 0.661i)9-s − 0.200·10-s + (−1.26 − 0.732i)11-s + (−0.0806 − 0.493i)12-s + (−0.150 + 0.988i)13-s + (0.332 + 0.575i)14-s + (−0.279 + 0.0456i)15-s + (−0.125 + 0.216i)16-s − 1.52·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.865 - 0.501i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.865 - 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0164801 + 0.0613559i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0164801 + 0.0613559i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (1.62 + 0.612i)T \) |
| 13 | \( 1 + (0.541 - 3.56i)T \) |
good | 5 | \( 1 + (-0.548 + 0.316i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.15 + 1.24i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.20 + 2.43i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 6.27T + 17T^{2} \) |
| 19 | \( 1 - 4.86iT - 19T^{2} \) |
| 23 | \( 1 + (1.77 + 3.07i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.415 + 0.719i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.73 - 2.15i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 7.81iT - 37T^{2} \) |
| 41 | \( 1 + (-0.0678 + 0.0391i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.84 + 8.38i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.30 - 2.48i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 6.36T + 53T^{2} \) |
| 59 | \( 1 + (-7.86 + 4.54i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.28 + 9.15i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.82 - 3.94i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.3iT - 71T^{2} \) |
| 73 | \( 1 + 1.05iT - 73T^{2} \) |
| 79 | \( 1 + (1.68 - 2.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (13.1 + 7.60i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 0.595iT - 89T^{2} \) |
| 97 | \( 1 + (-14.7 - 8.53i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39163348368467541403563190173, −10.70339795454305204597829738759, −9.912805738789492771777381513699, −8.777664799135788031412956359408, −7.52224730974668955739434666437, −6.61106315231499250004758337136, −5.56263424046431513599858521928, −4.01154176665103283429830954797, −2.12506133563451912212272979153, −0.06472313265520329611322090094,
2.60166767609160998247309073477, 4.67918804309072372810674431570, 5.72773206966556483602269880846, 6.61782482537019609845335985198, 7.66549485121842706128334343858, 9.074201843266751410366535498106, 9.941389183062139354725683164570, 10.58487075639055986094949724080, 11.55685884376098180003160271863, 12.76352972109650081417696104440