L(s) = 1 | + (−0.866 − 0.5i)2-s + (1.66 − 0.480i)3-s + (0.499 + 0.866i)4-s + (−0.515 + 0.297i)5-s + (−1.68 − 0.416i)6-s + (1.45 + 0.838i)7-s − 0.999i·8-s + (2.53 − 1.59i)9-s + 0.594·10-s + (0.416 + 0.240i)11-s + (1.24 + 1.20i)12-s + (3.56 − 0.567i)13-s + (−0.838 − 1.45i)14-s + (−0.714 + 0.742i)15-s + (−0.5 + 0.866i)16-s − 2.09·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.960 − 0.277i)3-s + (0.249 + 0.433i)4-s + (−0.230 + 0.132i)5-s + (−0.686 − 0.169i)6-s + (0.548 + 0.316i)7-s − 0.353i·8-s + (0.846 − 0.532i)9-s + 0.188·10-s + (0.125 + 0.0724i)11-s + (0.360 + 0.346i)12-s + (0.987 − 0.157i)13-s + (−0.224 − 0.388i)14-s + (−0.184 + 0.191i)15-s + (−0.125 + 0.216i)16-s − 0.507·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 + 0.480i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.876 + 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26241 - 0.323473i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26241 - 0.323473i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (-1.66 + 0.480i)T \) |
| 13 | \( 1 + (-3.56 + 0.567i)T \) |
good | 5 | \( 1 + (0.515 - 0.297i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.45 - 0.838i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.416 - 0.240i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 2.09T + 17T^{2} \) |
| 19 | \( 1 + 0.480iT - 19T^{2} \) |
| 23 | \( 1 + (1.83 + 3.17i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.23 + 2.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.993 + 0.573i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.65iT - 37T^{2} \) |
| 41 | \( 1 + (8.58 - 4.95i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 - 5.98i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.40 - 3.12i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 5.08T + 53T^{2} \) |
| 59 | \( 1 + (8.13 - 4.69i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.90 - 6.76i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.4 - 7.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.51iT - 71T^{2} \) |
| 73 | \( 1 + 5.91iT - 73T^{2} \) |
| 79 | \( 1 + (-1.02 + 1.78i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.57 - 5.53i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 9.48iT - 89T^{2} \) |
| 97 | \( 1 + (8.41 + 4.85i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98376744317546736274775359676, −11.12968366659057809547253226598, −10.05874815959061000798262424085, −8.982266550062208200349161800730, −8.333648825349041702359355376856, −7.46213402289725356525230600673, −6.25877615854497565126294005558, −4.33102106595955063222825381395, −3.05670726606791139591779686467, −1.65648706682890724467306018636,
1.74362787917034454929791003531, 3.57659992932741169850510216918, 4.80332836639551488903916927207, 6.41093213316357803959301581376, 7.60774482108058868438316370085, 8.372329628705617652514682524934, 9.093928886973036730687694006875, 10.20278776031439760101456306338, 11.00506977580328858167945082790, 12.15947108538098577119613966911