L(s) = 1 | + (−0.707 − 0.707i)2-s + (1.67 + 0.444i)3-s + 1.00i·4-s + (3.83 − 1.02i)5-s + (−0.869 − 1.49i)6-s + (−1.55 + 0.415i)7-s + (0.707 − 0.707i)8-s + (2.60 + 1.48i)9-s + (−3.43 − 1.98i)10-s + (−3.50 + 3.50i)11-s + (−0.444 + 1.67i)12-s + (−1.03 − 3.45i)13-s + (1.39 + 0.803i)14-s + (6.87 − 0.0145i)15-s − 1.00·16-s + (0.584 + 1.01i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (0.966 + 0.256i)3-s + 0.500i·4-s + (1.71 − 0.459i)5-s + (−0.354 − 0.611i)6-s + (−0.586 + 0.157i)7-s + (0.250 − 0.250i)8-s + (0.868 + 0.496i)9-s + (−1.08 − 0.627i)10-s + (−1.05 + 1.05i)11-s + (−0.128 + 0.483i)12-s + (−0.288 − 0.957i)13-s + (0.371 + 0.214i)14-s + (1.77 − 0.00375i)15-s − 0.250·16-s + (0.141 + 0.245i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.938+0.345i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.938+0.345i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.938+0.345i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.938+0.345i)
|
Particular Values
L(1) |
≈ |
1.48255−0.264355i |
L(21) |
≈ |
1.48255−0.264355i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1+(−1.67−0.444i)T |
| 13 | 1+(1.03+3.45i)T |
good | 5 | 1+(−3.83+1.02i)T+(4.33−2.5i)T2 |
| 7 | 1+(1.55−0.415i)T+(6.06−3.5i)T2 |
| 11 | 1+(3.50−3.50i)T−11iT2 |
| 17 | 1+(−0.584−1.01i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4.16+1.11i)T+(16.4+9.5i)T2 |
| 23 | 1+(−1.63−2.83i)T+(−11.5+19.9i)T2 |
| 29 | 1+7.50iT−29T2 |
| 31 | 1+(1.94+7.25i)T+(−26.8+15.5i)T2 |
| 37 | 1+(4.28−1.14i)T+(32.0−18.5i)T2 |
| 41 | 1+(1.44−5.41i)T+(−35.5−20.5i)T2 |
| 43 | 1+(0.770+0.444i)T+(21.5+37.2i)T2 |
| 47 | 1+(−2.43−0.653i)T+(40.7+23.5i)T2 |
| 53 | 1−6.60iT−53T2 |
| 59 | 1+(−5.81+5.81i)T−59iT2 |
| 61 | 1+(7.05−12.2i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.19+0.855i)T+(58.0+33.5i)T2 |
| 71 | 1+(−0.942+3.51i)T+(−61.4−35.5i)T2 |
| 73 | 1+(3.33+3.33i)T+73iT2 |
| 79 | 1+(1.16+2.02i)T+(−39.5+68.4i)T2 |
| 83 | 1+(2.82−10.5i)T+(−71.8−41.5i)T2 |
| 89 | 1+(1.78+6.65i)T+(−77.0+44.5i)T2 |
| 97 | 1+(1.65+6.17i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.52239603647713144419858402923, −10.61484545842654447147265775755, −9.893900900267100323883326787525, −9.551592097861042272063430286599, −8.472494198252959903913748272585, −7.42597538419669795384917964109, −5.90974694288548258249387328447, −4.64737747586945621350229126505, −2.81439928967093052849388242729, −1.98930521193740247269392832466,
1.92020018230108385184546902031, 3.11197061608121771681908992683, 5.24648075824000802976927669520, 6.45940698429993905504441488995, 7.05621346328667778594614068241, 8.568454091458252745490078295210, 9.140805977313498920091908534310, 10.17267753568737865203088541055, 10.68117167944282690393444898131, 12.66829401593755248949645317042