L(s) = 1 | − 1.30·3-s − 2.30·5-s + 2.60·7-s − 1.30·9-s − 4.30·11-s + 1.30·13-s + 3·15-s + 7.21·17-s + 6·19-s − 3.39·21-s − 4.69·23-s + 0.302·25-s + 5.60·27-s − 6.69·29-s + 1.69·31-s + 5.60·33-s − 6·35-s + 37-s − 1.69·39-s − 3.30·41-s + 8.60·43-s + 3.00·45-s + 3.39·47-s − 0.211·49-s − 9.39·51-s − 7.21·53-s + 9.90·55-s + ⋯ |
L(s) = 1 | − 0.752·3-s − 1.02·5-s + 0.984·7-s − 0.434·9-s − 1.29·11-s + 0.361·13-s + 0.774·15-s + 1.74·17-s + 1.37·19-s − 0.740·21-s − 0.979·23-s + 0.0605·25-s + 1.07·27-s − 1.24·29-s + 0.304·31-s + 0.975·33-s − 1.01·35-s + 0.164·37-s − 0.271·39-s − 0.515·41-s + 1.31·43-s + 0.447·45-s + 0.495·47-s − 0.0301·49-s − 1.31·51-s − 0.990·53-s + 1.33·55-s + ⋯ |
Λ(s)=(=(2368s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2368s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1−T |
good | 3 | 1+1.30T+3T2 |
| 5 | 1+2.30T+5T2 |
| 7 | 1−2.60T+7T2 |
| 11 | 1+4.30T+11T2 |
| 13 | 1−1.30T+13T2 |
| 17 | 1−7.21T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+4.69T+23T2 |
| 29 | 1+6.69T+29T2 |
| 31 | 1−1.69T+31T2 |
| 41 | 1+3.30T+41T2 |
| 43 | 1−8.60T+43T2 |
| 47 | 1−3.39T+47T2 |
| 53 | 1+7.21T+53T2 |
| 59 | 1−2.60T+59T2 |
| 61 | 1+9.69T+61T2 |
| 67 | 1+4.30T+67T2 |
| 71 | 1+11.2T+71T2 |
| 73 | 1+4.30T+73T2 |
| 79 | 1+4.69T+79T2 |
| 83 | 1−17.2T+83T2 |
| 89 | 1+13.2T+89T2 |
| 97 | 1−0.788T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.236892518577937037428452871110, −7.78490977879740658181867648544, −7.42362953664918695756571454908, −5.91390320727409415639399791165, −5.49240628919288568642473632033, −4.76425622305794922930154831191, −3.71376498573645612762292154340, −2.83320563003836383221363635042, −1.30150012601447988763520962306, 0,
1.30150012601447988763520962306, 2.83320563003836383221363635042, 3.71376498573645612762292154340, 4.76425622305794922930154831191, 5.49240628919288568642473632033, 5.91390320727409415639399791165, 7.42362953664918695756571454908, 7.78490977879740658181867648544, 8.236892518577937037428452871110