Properties

Label 2-2368-1.1-c1-0-38
Degree $2$
Conductor $2368$
Sign $-1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.30·3-s − 2.30·5-s + 2.60·7-s − 1.30·9-s − 4.30·11-s + 1.30·13-s + 3·15-s + 7.21·17-s + 6·19-s − 3.39·21-s − 4.69·23-s + 0.302·25-s + 5.60·27-s − 6.69·29-s + 1.69·31-s + 5.60·33-s − 6·35-s + 37-s − 1.69·39-s − 3.30·41-s + 8.60·43-s + 3.00·45-s + 3.39·47-s − 0.211·49-s − 9.39·51-s − 7.21·53-s + 9.90·55-s + ⋯
L(s)  = 1  − 0.752·3-s − 1.02·5-s + 0.984·7-s − 0.434·9-s − 1.29·11-s + 0.361·13-s + 0.774·15-s + 1.74·17-s + 1.37·19-s − 0.740·21-s − 0.979·23-s + 0.0605·25-s + 1.07·27-s − 1.24·29-s + 0.304·31-s + 0.975·33-s − 1.01·35-s + 0.164·37-s − 0.271·39-s − 0.515·41-s + 1.31·43-s + 0.447·45-s + 0.495·47-s − 0.0301·49-s − 1.31·51-s − 0.990·53-s + 1.33·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $-1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 1.30T + 3T^{2} \)
5 \( 1 + 2.30T + 5T^{2} \)
7 \( 1 - 2.60T + 7T^{2} \)
11 \( 1 + 4.30T + 11T^{2} \)
13 \( 1 - 1.30T + 13T^{2} \)
17 \( 1 - 7.21T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + 4.69T + 23T^{2} \)
29 \( 1 + 6.69T + 29T^{2} \)
31 \( 1 - 1.69T + 31T^{2} \)
41 \( 1 + 3.30T + 41T^{2} \)
43 \( 1 - 8.60T + 43T^{2} \)
47 \( 1 - 3.39T + 47T^{2} \)
53 \( 1 + 7.21T + 53T^{2} \)
59 \( 1 - 2.60T + 59T^{2} \)
61 \( 1 + 9.69T + 61T^{2} \)
67 \( 1 + 4.30T + 67T^{2} \)
71 \( 1 + 11.2T + 71T^{2} \)
73 \( 1 + 4.30T + 73T^{2} \)
79 \( 1 + 4.69T + 79T^{2} \)
83 \( 1 - 17.2T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 - 0.788T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.236892518577937037428452871110, −7.78490977879740658181867648544, −7.42362953664918695756571454908, −5.91390320727409415639399791165, −5.49240628919288568642473632033, −4.76425622305794922930154831191, −3.71376498573645612762292154340, −2.83320563003836383221363635042, −1.30150012601447988763520962306, 0, 1.30150012601447988763520962306, 2.83320563003836383221363635042, 3.71376498573645612762292154340, 4.76425622305794922930154831191, 5.49240628919288568642473632033, 5.91390320727409415639399791165, 7.42362953664918695756571454908, 7.78490977879740658181867648544, 8.236892518577937037428452871110

Graph of the $Z$-function along the critical line