Properties

Label 2-2368-1.1-c1-0-41
Degree $2$
Conductor $2368$
Sign $-1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.93·3-s + 2.93·5-s − 4.68·7-s + 0.745·9-s + 0.762·11-s − 1.76·13-s − 5.68·15-s + 3.36·17-s + 7.36·19-s + 9.06·21-s − 3.25·23-s + 3.61·25-s + 4.36·27-s + 3.25·29-s − 3.06·31-s − 1.47·33-s − 13.7·35-s + 37-s + 3.41·39-s − 7.42·41-s − 12.2·43-s + 2.18·45-s − 0.302·47-s + 14.9·49-s − 6.50·51-s − 5.53·53-s + 2.23·55-s + ⋯
L(s)  = 1  − 1.11·3-s + 1.31·5-s − 1.76·7-s + 0.248·9-s + 0.229·11-s − 0.488·13-s − 1.46·15-s + 0.815·17-s + 1.68·19-s + 1.97·21-s − 0.678·23-s + 0.723·25-s + 0.839·27-s + 0.604·29-s − 0.550·31-s − 0.256·33-s − 2.32·35-s + 0.164·37-s + 0.546·39-s − 1.15·41-s − 1.86·43-s + 0.326·45-s − 0.0440·47-s + 2.13·49-s − 0.911·51-s − 0.760·53-s + 0.301·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $-1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + 1.93T + 3T^{2} \)
5 \( 1 - 2.93T + 5T^{2} \)
7 \( 1 + 4.68T + 7T^{2} \)
11 \( 1 - 0.762T + 11T^{2} \)
13 \( 1 + 1.76T + 13T^{2} \)
17 \( 1 - 3.36T + 17T^{2} \)
19 \( 1 - 7.36T + 19T^{2} \)
23 \( 1 + 3.25T + 23T^{2} \)
29 \( 1 - 3.25T + 29T^{2} \)
31 \( 1 + 3.06T + 31T^{2} \)
41 \( 1 + 7.42T + 41T^{2} \)
43 \( 1 + 12.2T + 43T^{2} \)
47 \( 1 + 0.302T + 47T^{2} \)
53 \( 1 + 5.53T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 + 12.2T + 61T^{2} \)
67 \( 1 + 13.1T + 67T^{2} \)
71 \( 1 + 0.173T + 71T^{2} \)
73 \( 1 + 1.23T + 73T^{2} \)
79 \( 1 + 4.61T + 79T^{2} \)
83 \( 1 - 3.53T + 83T^{2} \)
89 \( 1 - 15.7T + 89T^{2} \)
97 \( 1 + 16.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.902386820949328232085049668707, −7.58386915294965718612748495956, −6.65695905187835746597161811998, −6.24303256703266197267961835147, −5.55734847331483286213249208269, −5.02027819319793879495335637939, −3.50115944702038849552515004838, −2.79363622965920750775064069811, −1.37093618209581543756882175601, 0, 1.37093618209581543756882175601, 2.79363622965920750775064069811, 3.50115944702038849552515004838, 5.02027819319793879495335637939, 5.55734847331483286213249208269, 6.24303256703266197267961835147, 6.65695905187835746597161811998, 7.58386915294965718612748495956, 8.902386820949328232085049668707

Graph of the $Z$-function along the critical line