Properties

Label 2-2368-1.1-c1-0-43
Degree $2$
Conductor $2368$
Sign $-1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s − 3·11-s + 4·13-s + 6·17-s − 2·19-s + 21-s + 6·23-s − 5·25-s + 5·27-s + 6·29-s − 4·31-s + 3·33-s − 37-s − 4·39-s − 9·41-s − 8·43-s + 3·47-s − 6·49-s − 6·51-s + 3·53-s + 2·57-s − 12·59-s − 8·61-s + 2·63-s + 4·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.904·11-s + 1.10·13-s + 1.45·17-s − 0.458·19-s + 0.218·21-s + 1.25·23-s − 25-s + 0.962·27-s + 1.11·29-s − 0.718·31-s + 0.522·33-s − 0.164·37-s − 0.640·39-s − 1.40·41-s − 1.21·43-s + 0.437·47-s − 6/7·49-s − 0.840·51-s + 0.412·53-s + 0.264·57-s − 1.56·59-s − 1.02·61-s + 0.251·63-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $-1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.487594403486838813155108109695, −7.953080976467459568741615470163, −6.92702526110685059626904983928, −6.13026790010533892031415629049, −5.52397436821147602871559735263, −4.81124860316907390767416903100, −3.49656973901712201010716232454, −2.90414738025441870892963779928, −1.39370194281586028856128276808, 0, 1.39370194281586028856128276808, 2.90414738025441870892963779928, 3.49656973901712201010716232454, 4.81124860316907390767416903100, 5.52397436821147602871559735263, 6.13026790010533892031415629049, 6.92702526110685059626904983928, 7.953080976467459568741615470163, 8.487594403486838813155108109695

Graph of the $Z$-function along the critical line