L(s) = 1 | − 3-s − 7-s − 2·9-s − 3·11-s + 4·13-s + 6·17-s − 2·19-s + 21-s + 6·23-s − 5·25-s + 5·27-s + 6·29-s − 4·31-s + 3·33-s − 37-s − 4·39-s − 9·41-s − 8·43-s + 3·47-s − 6·49-s − 6·51-s + 3·53-s + 2·57-s − 12·59-s − 8·61-s + 2·63-s + 4·67-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.904·11-s + 1.10·13-s + 1.45·17-s − 0.458·19-s + 0.218·21-s + 1.25·23-s − 25-s + 0.962·27-s + 1.11·29-s − 0.718·31-s + 0.522·33-s − 0.164·37-s − 0.640·39-s − 1.40·41-s − 1.21·43-s + 0.437·47-s − 6/7·49-s − 0.840·51-s + 0.412·53-s + 0.264·57-s − 1.56·59-s − 1.02·61-s + 0.251·63-s + 0.488·67-s + ⋯ |
Λ(s)=(=(2368s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2368s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1 | |
| 37 | 1+T | |
good | 3 | 1+T+pT2 | 1.3.b |
| 5 | 1+pT2 | 1.5.a |
| 7 | 1+T+pT2 | 1.7.b |
| 11 | 1+3T+pT2 | 1.11.d |
| 13 | 1−4T+pT2 | 1.13.ae |
| 17 | 1−6T+pT2 | 1.17.ag |
| 19 | 1+2T+pT2 | 1.19.c |
| 23 | 1−6T+pT2 | 1.23.ag |
| 29 | 1−6T+pT2 | 1.29.ag |
| 31 | 1+4T+pT2 | 1.31.e |
| 41 | 1+9T+pT2 | 1.41.j |
| 43 | 1+8T+pT2 | 1.43.i |
| 47 | 1−3T+pT2 | 1.47.ad |
| 53 | 1−3T+pT2 | 1.53.ad |
| 59 | 1+12T+pT2 | 1.59.m |
| 61 | 1+8T+pT2 | 1.61.i |
| 67 | 1−4T+pT2 | 1.67.ae |
| 71 | 1+15T+pT2 | 1.71.p |
| 73 | 1−11T+pT2 | 1.73.al |
| 79 | 1+10T+pT2 | 1.79.k |
| 83 | 1+9T+pT2 | 1.83.j |
| 89 | 1−6T+pT2 | 1.89.ag |
| 97 | 1−8T+pT2 | 1.97.ai |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.487594403486838813155108109695, −7.953080976467459568741615470163, −6.92702526110685059626904983928, −6.13026790010533892031415629049, −5.52397436821147602871559735263, −4.81124860316907390767416903100, −3.49656973901712201010716232454, −2.90414738025441870892963779928, −1.39370194281586028856128276808, 0,
1.39370194281586028856128276808, 2.90414738025441870892963779928, 3.49656973901712201010716232454, 4.81124860316907390767416903100, 5.52397436821147602871559735263, 6.13026790010533892031415629049, 6.92702526110685059626904983928, 7.953080976467459568741615470163, 8.487594403486838813155108109695