Properties

Label 2-2368-1.1-c1-0-47
Degree $2$
Conductor $2368$
Sign $1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.14·3-s + 3.14·5-s + 1.74·7-s + 1.60·9-s + 2.89·11-s + 2.39·13-s + 6.74·15-s − 5.49·17-s − 2·19-s + 3.74·21-s − 1.60·23-s + 4.89·25-s − 3.00·27-s + 5.89·29-s + 3.94·31-s + 6.20·33-s + 5.49·35-s + 37-s + 5.14·39-s + 6.14·41-s − 5.20·43-s + 5.03·45-s + 0.253·47-s − 3.94·49-s − 11.7·51-s − 0.543·53-s + 9.09·55-s + ⋯
L(s)  = 1  + 1.23·3-s + 1.40·5-s + 0.660·7-s + 0.533·9-s + 0.871·11-s + 0.665·13-s + 1.74·15-s − 1.33·17-s − 0.458·19-s + 0.817·21-s − 0.333·23-s + 0.978·25-s − 0.577·27-s + 1.09·29-s + 0.708·31-s + 1.07·33-s + 0.928·35-s + 0.164·37-s + 0.823·39-s + 0.959·41-s − 0.793·43-s + 0.750·45-s + 0.0369·47-s − 0.564·49-s − 1.64·51-s − 0.0746·53-s + 1.22·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.987863264\)
\(L(\frac12)\) \(\approx\) \(3.987863264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 - T \)
good3 \( 1 - 2.14T + 3T^{2} \)
5 \( 1 - 3.14T + 5T^{2} \)
7 \( 1 - 1.74T + 7T^{2} \)
11 \( 1 - 2.89T + 11T^{2} \)
13 \( 1 - 2.39T + 13T^{2} \)
17 \( 1 + 5.49T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 + 1.60T + 23T^{2} \)
29 \( 1 - 5.89T + 29T^{2} \)
31 \( 1 - 3.94T + 31T^{2} \)
41 \( 1 - 6.14T + 41T^{2} \)
43 \( 1 + 5.20T + 43T^{2} \)
47 \( 1 - 0.253T + 47T^{2} \)
53 \( 1 + 0.543T + 53T^{2} \)
59 \( 1 + 10.6T + 59T^{2} \)
61 \( 1 + 6.63T + 61T^{2} \)
67 \( 1 + 7.14T + 67T^{2} \)
71 \( 1 + 4.03T + 71T^{2} \)
73 \( 1 - 3.18T + 73T^{2} \)
79 \( 1 - 9.89T + 79T^{2} \)
83 \( 1 + 6.03T + 83T^{2} \)
89 \( 1 - 4.50T + 89T^{2} \)
97 \( 1 - 12.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.915447509081912887975860156796, −8.485462029047928033319831977019, −7.63126703147705746927336782213, −6.41735797637935806682001338552, −6.16796841201063004777512128194, −4.86793964355662857915740254160, −4.11338539453528498659353500163, −2.97415100636859777003739925392, −2.13652759010808021764488466576, −1.45163804074301669692462615906, 1.45163804074301669692462615906, 2.13652759010808021764488466576, 2.97415100636859777003739925392, 4.11338539453528498659353500163, 4.86793964355662857915740254160, 6.16796841201063004777512128194, 6.41735797637935806682001338552, 7.63126703147705746927336782213, 8.485462029047928033319831977019, 8.915447509081912887975860156796

Graph of the $Z$-function along the critical line