L(s) = 1 | + 2.14·3-s + 3.14·5-s + 1.74·7-s + 1.60·9-s + 2.89·11-s + 2.39·13-s + 6.74·15-s − 5.49·17-s − 2·19-s + 3.74·21-s − 1.60·23-s + 4.89·25-s − 3.00·27-s + 5.89·29-s + 3.94·31-s + 6.20·33-s + 5.49·35-s + 37-s + 5.14·39-s + 6.14·41-s − 5.20·43-s + 5.03·45-s + 0.253·47-s − 3.94·49-s − 11.7·51-s − 0.543·53-s + 9.09·55-s + ⋯ |
L(s) = 1 | + 1.23·3-s + 1.40·5-s + 0.660·7-s + 0.533·9-s + 0.871·11-s + 0.665·13-s + 1.74·15-s − 1.33·17-s − 0.458·19-s + 0.817·21-s − 0.333·23-s + 0.978·25-s − 0.577·27-s + 1.09·29-s + 0.708·31-s + 1.07·33-s + 0.928·35-s + 0.164·37-s + 0.823·39-s + 0.959·41-s − 0.793·43-s + 0.750·45-s + 0.0369·47-s − 0.564·49-s − 1.64·51-s − 0.0746·53-s + 1.22·55-s + ⋯ |
Λ(s)=(=(2368s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2368s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.987863264 |
L(21) |
≈ |
3.987863264 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1−T |
good | 3 | 1−2.14T+3T2 |
| 5 | 1−3.14T+5T2 |
| 7 | 1−1.74T+7T2 |
| 11 | 1−2.89T+11T2 |
| 13 | 1−2.39T+13T2 |
| 17 | 1+5.49T+17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1+1.60T+23T2 |
| 29 | 1−5.89T+29T2 |
| 31 | 1−3.94T+31T2 |
| 41 | 1−6.14T+41T2 |
| 43 | 1+5.20T+43T2 |
| 47 | 1−0.253T+47T2 |
| 53 | 1+0.543T+53T2 |
| 59 | 1+10.6T+59T2 |
| 61 | 1+6.63T+61T2 |
| 67 | 1+7.14T+67T2 |
| 71 | 1+4.03T+71T2 |
| 73 | 1−3.18T+73T2 |
| 79 | 1−9.89T+79T2 |
| 83 | 1+6.03T+83T2 |
| 89 | 1−4.50T+89T2 |
| 97 | 1−12.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.915447509081912887975860156796, −8.485462029047928033319831977019, −7.63126703147705746927336782213, −6.41735797637935806682001338552, −6.16796841201063004777512128194, −4.86793964355662857915740254160, −4.11338539453528498659353500163, −2.97415100636859777003739925392, −2.13652759010808021764488466576, −1.45163804074301669692462615906,
1.45163804074301669692462615906, 2.13652759010808021764488466576, 2.97415100636859777003739925392, 4.11338539453528498659353500163, 4.86793964355662857915740254160, 6.16796841201063004777512128194, 6.41735797637935806682001338552, 7.63126703147705746927336782213, 8.485462029047928033319831977019, 8.915447509081912887975860156796