Properties

Label 2-2368-1.1-c1-0-5
Degree $2$
Conductor $2368$
Sign $1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 3·9-s − 2·13-s + 2·17-s + 2·19-s − 6·23-s − 25-s + 6·29-s − 2·31-s + 8·35-s + 37-s − 2·41-s + 2·43-s + 6·45-s − 4·47-s + 9·49-s + 6·53-s − 6·59-s + 6·61-s + 12·63-s + 4·65-s + 8·67-s − 4·71-s + 14·73-s + 2·79-s + 9·81-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 9-s − 0.554·13-s + 0.485·17-s + 0.458·19-s − 1.25·23-s − 1/5·25-s + 1.11·29-s − 0.359·31-s + 1.35·35-s + 0.164·37-s − 0.312·41-s + 0.304·43-s + 0.894·45-s − 0.583·47-s + 9/7·49-s + 0.824·53-s − 0.781·59-s + 0.768·61-s + 1.51·63-s + 0.496·65-s + 0.977·67-s − 0.474·71-s + 1.63·73-s + 0.225·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6379847301\)
\(L(\frac12)\) \(\approx\) \(0.6379847301\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.973965603903636884920497152678, −8.139963688567899948562200386516, −7.53219516094291790010148313731, −6.59864521555049293791212644521, −5.97021818307546082272950549982, −5.06427273115980897713846035422, −3.87796534605450220035734187243, −3.30488835115774555617471587930, −2.42538163944277566108766365040, −0.48051744224849779476855570293, 0.48051744224849779476855570293, 2.42538163944277566108766365040, 3.30488835115774555617471587930, 3.87796534605450220035734187243, 5.06427273115980897713846035422, 5.97021818307546082272950549982, 6.59864521555049293791212644521, 7.53219516094291790010148313731, 8.139963688567899948562200386516, 8.973965603903636884920497152678

Graph of the $Z$-function along the critical line