Properties

Label 2-2368-1.1-c1-0-51
Degree $2$
Conductor $2368$
Sign $1$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.30·3-s + 2.30·5-s + 2.60·7-s + 7.90·9-s − 2.30·11-s − 1.30·13-s + 7.60·15-s − 6·17-s + 2·19-s + 8.60·21-s − 3.90·23-s + 0.302·25-s + 16.2·27-s + 3.90·29-s + 0.302·31-s − 7.60·33-s + 6·35-s − 37-s − 4.30·39-s + 9.90·41-s + 0.605·43-s + 18.2·45-s − 4.60·47-s − 0.211·49-s − 19.8·51-s + 6·53-s − 5.30·55-s + ⋯
L(s)  = 1  + 1.90·3-s + 1.02·5-s + 0.984·7-s + 2.63·9-s − 0.694·11-s − 0.361·13-s + 1.96·15-s − 1.45·17-s + 0.458·19-s + 1.87·21-s − 0.814·23-s + 0.0605·25-s + 3.11·27-s + 0.725·29-s + 0.0543·31-s − 1.32·33-s + 1.01·35-s − 0.164·37-s − 0.688·39-s + 1.54·41-s + 0.0923·43-s + 2.71·45-s − 0.671·47-s − 0.0301·49-s − 2.77·51-s + 0.824·53-s − 0.715·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $1$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.614467702\)
\(L(\frac12)\) \(\approx\) \(4.614467702\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - 3.30T + 3T^{2} \)
5 \( 1 - 2.30T + 5T^{2} \)
7 \( 1 - 2.60T + 7T^{2} \)
11 \( 1 + 2.30T + 11T^{2} \)
13 \( 1 + 1.30T + 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 3.90T + 23T^{2} \)
29 \( 1 - 3.90T + 29T^{2} \)
31 \( 1 - 0.302T + 31T^{2} \)
41 \( 1 - 9.90T + 41T^{2} \)
43 \( 1 - 0.605T + 43T^{2} \)
47 \( 1 + 4.60T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 10.6T + 59T^{2} \)
61 \( 1 + 7.51T + 61T^{2} \)
67 \( 1 + 3.51T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 + 9.11T + 79T^{2} \)
83 \( 1 - 2.78T + 83T^{2} \)
89 \( 1 + 9.21T + 89T^{2} \)
97 \( 1 + 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.855820573373444028373712414413, −8.336611144699361093517820113497, −7.64429795463427911698833468025, −6.95825527448039212767536842635, −5.84019526948162706012289293039, −4.74679733400694768212541219378, −4.14541829434390951103105683313, −2.83802902324237826115557032885, −2.27347514723706435329817268742, −1.55299958308258776591813379532, 1.55299958308258776591813379532, 2.27347514723706435329817268742, 2.83802902324237826115557032885, 4.14541829434390951103105683313, 4.74679733400694768212541219378, 5.84019526948162706012289293039, 6.95825527448039212767536842635, 7.64429795463427911698833468025, 8.336611144699361093517820113497, 8.855820573373444028373712414413

Graph of the $Z$-function along the critical line