L(s) = 1 | + 3.30·3-s + 2.30·5-s + 2.60·7-s + 7.90·9-s − 2.30·11-s − 1.30·13-s + 7.60·15-s − 6·17-s + 2·19-s + 8.60·21-s − 3.90·23-s + 0.302·25-s + 16.2·27-s + 3.90·29-s + 0.302·31-s − 7.60·33-s + 6·35-s − 37-s − 4.30·39-s + 9.90·41-s + 0.605·43-s + 18.2·45-s − 4.60·47-s − 0.211·49-s − 19.8·51-s + 6·53-s − 5.30·55-s + ⋯ |
L(s) = 1 | + 1.90·3-s + 1.02·5-s + 0.984·7-s + 2.63·9-s − 0.694·11-s − 0.361·13-s + 1.96·15-s − 1.45·17-s + 0.458·19-s + 1.87·21-s − 0.814·23-s + 0.0605·25-s + 3.11·27-s + 0.725·29-s + 0.0543·31-s − 1.32·33-s + 1.01·35-s − 0.164·37-s − 0.688·39-s + 1.54·41-s + 0.0923·43-s + 2.71·45-s − 0.671·47-s − 0.0301·49-s − 2.77·51-s + 0.824·53-s − 0.715·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.614467702\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.614467702\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 3 | \( 1 - 3.30T + 3T^{2} \) |
| 5 | \( 1 - 2.30T + 5T^{2} \) |
| 7 | \( 1 - 2.60T + 7T^{2} \) |
| 11 | \( 1 + 2.30T + 11T^{2} \) |
| 13 | \( 1 + 1.30T + 13T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + 3.90T + 23T^{2} \) |
| 29 | \( 1 - 3.90T + 29T^{2} \) |
| 31 | \( 1 - 0.302T + 31T^{2} \) |
| 41 | \( 1 - 9.90T + 41T^{2} \) |
| 43 | \( 1 - 0.605T + 43T^{2} \) |
| 47 | \( 1 + 4.60T + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 - 10.6T + 59T^{2} \) |
| 61 | \( 1 + 7.51T + 61T^{2} \) |
| 67 | \( 1 + 3.51T + 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 12.3T + 73T^{2} \) |
| 79 | \( 1 + 9.11T + 79T^{2} \) |
| 83 | \( 1 - 2.78T + 83T^{2} \) |
| 89 | \( 1 + 9.21T + 89T^{2} \) |
| 97 | \( 1 + 16.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.855820573373444028373712414413, −8.336611144699361093517820113497, −7.64429795463427911698833468025, −6.95825527448039212767536842635, −5.84019526948162706012289293039, −4.74679733400694768212541219378, −4.14541829434390951103105683313, −2.83802902324237826115557032885, −2.27347514723706435329817268742, −1.55299958308258776591813379532,
1.55299958308258776591813379532, 2.27347514723706435329817268742, 2.83802902324237826115557032885, 4.14541829434390951103105683313, 4.74679733400694768212541219378, 5.84019526948162706012289293039, 6.95825527448039212767536842635, 7.64429795463427911698833468025, 8.336611144699361093517820113497, 8.855820573373444028373712414413