L(s) = 1 | + 3.30·3-s + 2.30·5-s + 2.60·7-s + 7.90·9-s − 2.30·11-s − 1.30·13-s + 7.60·15-s − 6·17-s + 2·19-s + 8.60·21-s − 3.90·23-s + 0.302·25-s + 16.2·27-s + 3.90·29-s + 0.302·31-s − 7.60·33-s + 6·35-s − 37-s − 4.30·39-s + 9.90·41-s + 0.605·43-s + 18.2·45-s − 4.60·47-s − 0.211·49-s − 19.8·51-s + 6·53-s − 5.30·55-s + ⋯ |
L(s) = 1 | + 1.90·3-s + 1.02·5-s + 0.984·7-s + 2.63·9-s − 0.694·11-s − 0.361·13-s + 1.96·15-s − 1.45·17-s + 0.458·19-s + 1.87·21-s − 0.814·23-s + 0.0605·25-s + 3.11·27-s + 0.725·29-s + 0.0543·31-s − 1.32·33-s + 1.01·35-s − 0.164·37-s − 0.688·39-s + 1.54·41-s + 0.0923·43-s + 2.71·45-s − 0.671·47-s − 0.0301·49-s − 2.77·51-s + 0.824·53-s − 0.715·55-s + ⋯ |
Λ(s)=(=(2368s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2368s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.614467702 |
L(21) |
≈ |
4.614467702 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+T |
good | 3 | 1−3.30T+3T2 |
| 5 | 1−2.30T+5T2 |
| 7 | 1−2.60T+7T2 |
| 11 | 1+2.30T+11T2 |
| 13 | 1+1.30T+13T2 |
| 17 | 1+6T+17T2 |
| 19 | 1−2T+19T2 |
| 23 | 1+3.90T+23T2 |
| 29 | 1−3.90T+29T2 |
| 31 | 1−0.302T+31T2 |
| 41 | 1−9.90T+41T2 |
| 43 | 1−0.605T+43T2 |
| 47 | 1+4.60T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1−10.6T+59T2 |
| 61 | 1+7.51T+61T2 |
| 67 | 1+3.51T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+12.3T+73T2 |
| 79 | 1+9.11T+79T2 |
| 83 | 1−2.78T+83T2 |
| 89 | 1+9.21T+89T2 |
| 97 | 1+16.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.855820573373444028373712414413, −8.336611144699361093517820113497, −7.64429795463427911698833468025, −6.95825527448039212767536842635, −5.84019526948162706012289293039, −4.74679733400694768212541219378, −4.14541829434390951103105683313, −2.83802902324237826115557032885, −2.27347514723706435329817268742, −1.55299958308258776591813379532,
1.55299958308258776591813379532, 2.27347514723706435329817268742, 2.83802902324237826115557032885, 4.14541829434390951103105683313, 4.74679733400694768212541219378, 5.84019526948162706012289293039, 6.95825527448039212767536842635, 7.64429795463427911698833468025, 8.336611144699361093517820113497, 8.855820573373444028373712414413