L(s) = 1 | + (−1.40 − 0.851i)2-s + (0.794 + 1.51i)4-s + (−0.911 − 0.410i)5-s + (0.0704 − 1.16i)8-s + (0.935 + 1.35i)10-s + (−0.120 + 0.174i)16-s + (0.269 + 0.239i)17-s + (−1.17 + 0.366i)19-s + (−0.103 − 1.70i)20-s + (−0.170 + 0.170i)23-s + (0.663 + 0.748i)25-s + (−1.34 − 1.05i)31-s + (−0.746 + 0.335i)32-s + (−0.176 − 0.566i)34-s + (1.97 + 0.485i)38-s + ⋯ |
L(s) = 1 | + (−1.40 − 0.851i)2-s + (0.794 + 1.51i)4-s + (−0.911 − 0.410i)5-s + (0.0704 − 1.16i)8-s + (0.935 + 1.35i)10-s + (−0.120 + 0.174i)16-s + (0.269 + 0.239i)17-s + (−1.17 + 0.366i)19-s + (−0.103 − 1.70i)20-s + (−0.170 + 0.170i)23-s + (0.663 + 0.748i)25-s + (−1.34 − 1.05i)31-s + (−0.746 + 0.335i)32-s + (−0.176 − 0.566i)34-s + (1.97 + 0.485i)38-s + ⋯ |
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.104−0.994i)Λ(1−s)
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.104−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
2385
= 32⋅5⋅53
|
Sign: |
0.104−0.994i
|
Analytic conductor: |
1.19027 |
Root analytic conductor: |
1.09099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2385(919,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2385, ( :0), 0.104−0.994i)
|
Particular Values
L(21) |
≈ |
0.1267848454 |
L(21) |
≈ |
0.1267848454 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.911+0.410i)T |
| 53 | 1+(−0.0603−0.998i)T |
good | 2 | 1+(1.40+0.851i)T+(0.464+0.885i)T2 |
| 7 | 1+(0.885−0.464i)T2 |
| 11 | 1+(0.970+0.239i)T2 |
| 13 | 1+(−0.568−0.822i)T2 |
| 17 | 1+(−0.269−0.239i)T+(0.120+0.992i)T2 |
| 19 | 1+(1.17−0.366i)T+(0.822−0.568i)T2 |
| 23 | 1+(0.170−0.170i)T−iT2 |
| 29 | 1+(0.970−0.239i)T2 |
| 31 | 1+(1.34+1.05i)T+(0.239+0.970i)T2 |
| 37 | 1+(−0.354−0.935i)T2 |
| 41 | 1+(−0.239+0.970i)T2 |
| 43 | 1+(−0.354+0.935i)T2 |
| 47 | 1+(0.556+0.210i)T+(0.748+0.663i)T2 |
| 59 | 1+(0.748+0.663i)T2 |
| 61 | 1+(0.120+0.00729i)T+(0.992+0.120i)T2 |
| 67 | 1+(−0.822−0.568i)T2 |
| 71 | 1+(−0.935−0.354i)T2 |
| 73 | 1+(−0.992+0.120i)T2 |
| 79 | 1+(1.56−0.943i)T+(0.464−0.885i)T2 |
| 83 | 1+(−0.657−0.657i)T+iT2 |
| 89 | 1+(0.120+0.992i)T2 |
| 97 | 1+(0.748−0.663i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.230621518419971869305645252615, −8.722068405862252629030571538792, −7.922522555209376297619584411332, −7.58871280368738840867389836816, −6.51164636165695945018958817082, −5.37370138634795474347795209211, −4.20601554332691400308035640035, −3.48002552645656970309135117692, −2.34782142786850660196610659072, −1.30669633793806081000057514625,
0.14504643246485794346885214783, 1.74106156784258619109237606992, 3.12926103676406730124282761291, 4.17077287105807154577116802374, 5.25556879712805997574564764467, 6.32667615211836541978799209656, 6.90029979956585205179757411821, 7.50665601848430782879308879560, 8.275528283108012105617309778684, 8.721049391103953318165268937155