L(s) = 1 | + (−1.40 − 0.851i)2-s + (0.794 + 1.51i)4-s + (−0.911 − 0.410i)5-s + (0.0704 − 1.16i)8-s + (0.935 + 1.35i)10-s + (−0.120 + 0.174i)16-s + (0.269 + 0.239i)17-s + (−1.17 + 0.366i)19-s + (−0.103 − 1.70i)20-s + (−0.170 + 0.170i)23-s + (0.663 + 0.748i)25-s + (−1.34 − 1.05i)31-s + (−0.746 + 0.335i)32-s + (−0.176 − 0.566i)34-s + (1.97 + 0.485i)38-s + ⋯ |
L(s) = 1 | + (−1.40 − 0.851i)2-s + (0.794 + 1.51i)4-s + (−0.911 − 0.410i)5-s + (0.0704 − 1.16i)8-s + (0.935 + 1.35i)10-s + (−0.120 + 0.174i)16-s + (0.269 + 0.239i)17-s + (−1.17 + 0.366i)19-s + (−0.103 − 1.70i)20-s + (−0.170 + 0.170i)23-s + (0.663 + 0.748i)25-s + (−1.34 − 1.05i)31-s + (−0.746 + 0.335i)32-s + (−0.176 − 0.566i)34-s + (1.97 + 0.485i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.104 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.104 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1267848454\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1267848454\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.911 + 0.410i)T \) |
| 53 | \( 1 + (-0.0603 - 0.998i)T \) |
good | 2 | \( 1 + (1.40 + 0.851i)T + (0.464 + 0.885i)T^{2} \) |
| 7 | \( 1 + (0.885 - 0.464i)T^{2} \) |
| 11 | \( 1 + (0.970 + 0.239i)T^{2} \) |
| 13 | \( 1 + (-0.568 - 0.822i)T^{2} \) |
| 17 | \( 1 + (-0.269 - 0.239i)T + (0.120 + 0.992i)T^{2} \) |
| 19 | \( 1 + (1.17 - 0.366i)T + (0.822 - 0.568i)T^{2} \) |
| 23 | \( 1 + (0.170 - 0.170i)T - iT^{2} \) |
| 29 | \( 1 + (0.970 - 0.239i)T^{2} \) |
| 31 | \( 1 + (1.34 + 1.05i)T + (0.239 + 0.970i)T^{2} \) |
| 37 | \( 1 + (-0.354 - 0.935i)T^{2} \) |
| 41 | \( 1 + (-0.239 + 0.970i)T^{2} \) |
| 43 | \( 1 + (-0.354 + 0.935i)T^{2} \) |
| 47 | \( 1 + (0.556 + 0.210i)T + (0.748 + 0.663i)T^{2} \) |
| 59 | \( 1 + (0.748 + 0.663i)T^{2} \) |
| 61 | \( 1 + (0.120 + 0.00729i)T + (0.992 + 0.120i)T^{2} \) |
| 67 | \( 1 + (-0.822 - 0.568i)T^{2} \) |
| 71 | \( 1 + (-0.935 - 0.354i)T^{2} \) |
| 73 | \( 1 + (-0.992 + 0.120i)T^{2} \) |
| 79 | \( 1 + (1.56 - 0.943i)T + (0.464 - 0.885i)T^{2} \) |
| 83 | \( 1 + (-0.657 - 0.657i)T + iT^{2} \) |
| 89 | \( 1 + (0.120 + 0.992i)T^{2} \) |
| 97 | \( 1 + (0.748 - 0.663i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.230621518419971869305645252615, −8.722068405862252629030571538792, −7.922522555209376297619584411332, −7.58871280368738840867389836816, −6.51164636165695945018958817082, −5.37370138634795474347795209211, −4.20601554332691400308035640035, −3.48002552645656970309135117692, −2.34782142786850660196610659072, −1.30669633793806081000057514625,
0.14504643246485794346885214783, 1.74106156784258619109237606992, 3.12926103676406730124282761291, 4.17077287105807154577116802374, 5.25556879712805997574564764467, 6.32667615211836541978799209656, 6.90029979956585205179757411821, 7.50665601848430782879308879560, 8.275528283108012105617309778684, 8.721049391103953318165268937155