L(s) = 1 | + (−0.437 − 0.437i)2-s − 0.618i·4-s + (0.987 + 0.156i)5-s + (−0.642 + 0.642i)7-s + (−0.707 + 0.707i)8-s + (−0.363 − 0.5i)10-s + (1.39 + 1.39i)13-s + 0.561·14-s + (0.0966 − 0.610i)20-s + (−1.34 + 1.34i)23-s + (0.951 + 0.309i)25-s − 1.22i·26-s + (0.396 + 0.396i)28-s + (0.707 + 0.707i)32-s + (−0.734 + 0.533i)35-s + ⋯ |
L(s) = 1 | + (−0.437 − 0.437i)2-s − 0.618i·4-s + (0.987 + 0.156i)5-s + (−0.642 + 0.642i)7-s + (−0.707 + 0.707i)8-s + (−0.363 − 0.5i)10-s + (1.39 + 1.39i)13-s + 0.561·14-s + (0.0966 − 0.610i)20-s + (−1.34 + 1.34i)23-s + (0.951 + 0.309i)25-s − 1.22i·26-s + (0.396 + 0.396i)28-s + (0.707 + 0.707i)32-s + (−0.734 + 0.533i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.028405678\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.028405678\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.987 - 0.156i)T \) |
| 53 | \( 1 + (0.707 - 0.707i)T \) |
good | 2 | \( 1 + (0.437 + 0.437i)T + iT^{2} \) |
| 7 | \( 1 + (0.642 - 0.642i)T - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1.39 - 1.39i)T + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (1.34 - 1.34i)T - iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1.26 + 1.26i)T - iT^{2} \) |
| 41 | \( 1 - 0.907iT - T^{2} \) |
| 43 | \( 1 + (-0.221 - 0.221i)T + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + 1.97iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-0.831 + 0.831i)T - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.221 + 0.221i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.316015159837988154249358372475, −8.866137120227015698906995226022, −7.75675173442557862601213056299, −6.42637282222043682960932778227, −6.14678153475878358880470179926, −5.54806870930338487024819948148, −4.33297373355927581669530544787, −3.17258460324451259675289896338, −2.11815299901061952138146306401, −1.45566351241097516128094935803,
0.861753963384573585525045963148, 2.49166582088573938116364142689, 3.40661901637917682969035027220, 4.19469278490963464146957102701, 5.48773133708776932264563674822, 6.32299012512808052355137146595, 6.63949916616092686406681582109, 7.81625622099027429746675794044, 8.326182552250648733201068990135, 8.993069395639826313057459752113