L(s) = 1 | + (−0.437 − 0.437i)2-s − 0.618i·4-s + (0.987 + 0.156i)5-s + (−0.642 + 0.642i)7-s + (−0.707 + 0.707i)8-s + (−0.363 − 0.5i)10-s + (1.39 + 1.39i)13-s + 0.561·14-s + (0.0966 − 0.610i)20-s + (−1.34 + 1.34i)23-s + (0.951 + 0.309i)25-s − 1.22i·26-s + (0.396 + 0.396i)28-s + (0.707 + 0.707i)32-s + (−0.734 + 0.533i)35-s + ⋯ |
L(s) = 1 | + (−0.437 − 0.437i)2-s − 0.618i·4-s + (0.987 + 0.156i)5-s + (−0.642 + 0.642i)7-s + (−0.707 + 0.707i)8-s + (−0.363 − 0.5i)10-s + (1.39 + 1.39i)13-s + 0.561·14-s + (0.0966 − 0.610i)20-s + (−1.34 + 1.34i)23-s + (0.951 + 0.309i)25-s − 1.22i·26-s + (0.396 + 0.396i)28-s + (0.707 + 0.707i)32-s + (−0.734 + 0.533i)35-s + ⋯ |
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.997−0.0746i)Λ(1−s)
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.997−0.0746i)Λ(1−s)
Degree: |
2 |
Conductor: |
2385
= 32⋅5⋅53
|
Sign: |
0.997−0.0746i
|
Analytic conductor: |
1.19027 |
Root analytic conductor: |
1.09099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2385(2278,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2385, ( :0), 0.997−0.0746i)
|
Particular Values
L(21) |
≈ |
1.028405678 |
L(21) |
≈ |
1.028405678 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.987−0.156i)T |
| 53 | 1+(0.707−0.707i)T |
good | 2 | 1+(0.437+0.437i)T+iT2 |
| 7 | 1+(0.642−0.642i)T−iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1.39−1.39i)T+iT2 |
| 17 | 1−iT2 |
| 19 | 1+T2 |
| 23 | 1+(1.34−1.34i)T−iT2 |
| 29 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1+(−1.26+1.26i)T−iT2 |
| 41 | 1−0.907iT−T2 |
| 43 | 1+(−0.221−0.221i)T+iT2 |
| 47 | 1−iT2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+iT2 |
| 71 | 1+1.97iT−T2 |
| 73 | 1−iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.831+0.831i)T−iT2 |
| 89 | 1−T2 |
| 97 | 1+(−0.221+0.221i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.316015159837988154249358372475, −8.866137120227015698906995226022, −7.75675173442557862601213056299, −6.42637282222043682960932778227, −6.14678153475878358880470179926, −5.54806870930338487024819948148, −4.33297373355927581669530544787, −3.17258460324451259675289896338, −2.11815299901061952138146306401, −1.45566351241097516128094935803,
0.861753963384573585525045963148, 2.49166582088573938116364142689, 3.40661901637917682969035027220, 4.19469278490963464146957102701, 5.48773133708776932264563674822, 6.32299012512808052355137146595, 6.63949916616092686406681582109, 7.81625622099027429746675794044, 8.326182552250648733201068990135, 8.993069395639826313057459752113