L(s) = 1 | + (0.239 + 1.30i)2-s + (−0.709 + 0.269i)4-s + (−0.787 + 0.616i)5-s + (0.165 + 0.273i)8-s + (−0.992 − 0.879i)10-s + (−0.885 + 0.784i)16-s + (−1.93 + 0.477i)17-s + (−0.542 + 0.244i)19-s + (0.392 − 0.649i)20-s + (1.25 + 1.25i)23-s + (0.239 − 0.970i)25-s + (−0.344 − 0.107i)31-s + (−0.983 − 0.770i)32-s + (−1.08 − 2.41i)34-s + (−0.448 − 0.649i)38-s + ⋯ |
L(s) = 1 | + (0.239 + 1.30i)2-s + (−0.709 + 0.269i)4-s + (−0.787 + 0.616i)5-s + (0.165 + 0.273i)8-s + (−0.992 − 0.879i)10-s + (−0.885 + 0.784i)16-s + (−1.93 + 0.477i)17-s + (−0.542 + 0.244i)19-s + (0.392 − 0.649i)20-s + (1.25 + 1.25i)23-s + (0.239 − 0.970i)25-s + (−0.344 − 0.107i)31-s + (−0.983 − 0.770i)32-s + (−1.08 − 2.41i)34-s + (−0.448 − 0.649i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8830331751\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8830331751\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.787 - 0.616i)T \) |
| 53 | \( 1 + (0.517 - 0.855i)T \) |
good | 2 | \( 1 + (-0.239 - 1.30i)T + (-0.935 + 0.354i)T^{2} \) |
| 7 | \( 1 + (-0.354 - 0.935i)T^{2} \) |
| 11 | \( 1 + (-0.568 - 0.822i)T^{2} \) |
| 13 | \( 1 + (0.748 + 0.663i)T^{2} \) |
| 17 | \( 1 + (1.93 - 0.477i)T + (0.885 - 0.464i)T^{2} \) |
| 19 | \( 1 + (0.542 - 0.244i)T + (0.663 - 0.748i)T^{2} \) |
| 23 | \( 1 + (-1.25 - 1.25i)T + iT^{2} \) |
| 29 | \( 1 + (-0.568 + 0.822i)T^{2} \) |
| 31 | \( 1 + (0.344 + 0.107i)T + (0.822 + 0.568i)T^{2} \) |
| 37 | \( 1 + (0.120 - 0.992i)T^{2} \) |
| 41 | \( 1 + (-0.822 + 0.568i)T^{2} \) |
| 43 | \( 1 + (0.120 + 0.992i)T^{2} \) |
| 47 | \( 1 + (0.814 - 0.0989i)T + (0.970 - 0.239i)T^{2} \) |
| 59 | \( 1 + (0.970 - 0.239i)T^{2} \) |
| 61 | \( 1 + (0.885 - 0.535i)T + (0.464 - 0.885i)T^{2} \) |
| 67 | \( 1 + (-0.663 - 0.748i)T^{2} \) |
| 71 | \( 1 + (0.992 - 0.120i)T^{2} \) |
| 73 | \( 1 + (-0.464 - 0.885i)T^{2} \) |
| 79 | \( 1 + (-0.283 + 1.54i)T + (-0.935 - 0.354i)T^{2} \) |
| 83 | \( 1 + (-1.32 + 1.32i)T - iT^{2} \) |
| 89 | \( 1 + (0.885 - 0.464i)T^{2} \) |
| 97 | \( 1 + (0.970 + 0.239i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.132820056004798228695535349086, −8.678249012703092455269598689256, −7.72141401263324774080326120017, −7.30122054767848010849919870894, −6.50405632596202779261194004023, −6.01787847001079674687101653844, −4.84371600442663099110458877669, −4.28712406828641208492695449902, −3.22433025486469460291175337050, −1.99478031841275561431218751250,
0.52601406899038369302046951507, 1.92117541109124773072043756707, 2.81105361222663386250816415976, 3.78068482060397298208222838929, 4.57504960558875934854441287467, 5.00452051983255243214296090172, 6.60768046543073857662998970048, 7.05760322886142868587344496820, 8.236266740940774802530259467600, 8.895054642546187822685013353645