L(s) = 1 | + (0.239 + 1.30i)2-s + (−0.709 + 0.269i)4-s + (−0.787 + 0.616i)5-s + (0.165 + 0.273i)8-s + (−0.992 − 0.879i)10-s + (−0.885 + 0.784i)16-s + (−1.93 + 0.477i)17-s + (−0.542 + 0.244i)19-s + (0.392 − 0.649i)20-s + (1.25 + 1.25i)23-s + (0.239 − 0.970i)25-s + (−0.344 − 0.107i)31-s + (−0.983 − 0.770i)32-s + (−1.08 − 2.41i)34-s + (−0.448 − 0.649i)38-s + ⋯ |
L(s) = 1 | + (0.239 + 1.30i)2-s + (−0.709 + 0.269i)4-s + (−0.787 + 0.616i)5-s + (0.165 + 0.273i)8-s + (−0.992 − 0.879i)10-s + (−0.885 + 0.784i)16-s + (−1.93 + 0.477i)17-s + (−0.542 + 0.244i)19-s + (0.392 − 0.649i)20-s + (1.25 + 1.25i)23-s + (0.239 − 0.970i)25-s + (−0.344 − 0.107i)31-s + (−0.983 − 0.770i)32-s + (−1.08 − 2.41i)34-s + (−0.448 − 0.649i)38-s + ⋯ |
Λ(s)=(=(2385s/2ΓC(s)L(s)(−0.915+0.402i)Λ(1−s)
Λ(s)=(=(2385s/2ΓC(s)L(s)(−0.915+0.402i)Λ(1−s)
Degree: |
2 |
Conductor: |
2385
= 32⋅5⋅53
|
Sign: |
−0.915+0.402i
|
Analytic conductor: |
1.19027 |
Root analytic conductor: |
1.09099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2385(1504,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2385, ( :0), −0.915+0.402i)
|
Particular Values
L(21) |
≈ |
0.8830331751 |
L(21) |
≈ |
0.8830331751 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.787−0.616i)T |
| 53 | 1+(0.517−0.855i)T |
good | 2 | 1+(−0.239−1.30i)T+(−0.935+0.354i)T2 |
| 7 | 1+(−0.354−0.935i)T2 |
| 11 | 1+(−0.568−0.822i)T2 |
| 13 | 1+(0.748+0.663i)T2 |
| 17 | 1+(1.93−0.477i)T+(0.885−0.464i)T2 |
| 19 | 1+(0.542−0.244i)T+(0.663−0.748i)T2 |
| 23 | 1+(−1.25−1.25i)T+iT2 |
| 29 | 1+(−0.568+0.822i)T2 |
| 31 | 1+(0.344+0.107i)T+(0.822+0.568i)T2 |
| 37 | 1+(0.120−0.992i)T2 |
| 41 | 1+(−0.822+0.568i)T2 |
| 43 | 1+(0.120+0.992i)T2 |
| 47 | 1+(0.814−0.0989i)T+(0.970−0.239i)T2 |
| 59 | 1+(0.970−0.239i)T2 |
| 61 | 1+(0.885−0.535i)T+(0.464−0.885i)T2 |
| 67 | 1+(−0.663−0.748i)T2 |
| 71 | 1+(0.992−0.120i)T2 |
| 73 | 1+(−0.464−0.885i)T2 |
| 79 | 1+(−0.283+1.54i)T+(−0.935−0.354i)T2 |
| 83 | 1+(−1.32+1.32i)T−iT2 |
| 89 | 1+(0.885−0.464i)T2 |
| 97 | 1+(0.970+0.239i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.132820056004798228695535349086, −8.678249012703092455269598689256, −7.72141401263324774080326120017, −7.30122054767848010849919870894, −6.50405632596202779261194004023, −6.01787847001079674687101653844, −4.84371600442663099110458877669, −4.28712406828641208492695449902, −3.22433025486469460291175337050, −1.99478031841275561431218751250,
0.52601406899038369302046951507, 1.92117541109124773072043756707, 2.81105361222663386250816415976, 3.78068482060397298208222838929, 4.57504960558875934854441287467, 5.00452051983255243214296090172, 6.60768046543073857662998970048, 7.05760322886142868587344496820, 8.236266740940774802530259467600, 8.895054642546187822685013353645