L(s) = 1 | − 27·3-s + 125·5-s + 1.40e3·7-s + 729·9-s + 4.04e3·11-s − 5.89e3·13-s − 3.37e3·15-s + 3.10e4·17-s + 4.03e4·19-s − 3.80e4·21-s + 7.89e4·23-s + 1.56e4·25-s − 1.96e4·27-s − 1.57e5·29-s − 1.14e5·31-s − 1.09e5·33-s + 1.76e5·35-s − 4.71e5·37-s + 1.59e5·39-s − 4.04e5·41-s + 2.53e5·43-s + 9.11e4·45-s − 4.37e5·47-s + 1.15e6·49-s − 8.37e5·51-s + 3.34e5·53-s + 5.05e5·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 1.55·7-s + 1/3·9-s + 0.916·11-s − 0.743·13-s − 0.258·15-s + 1.53·17-s + 1.34·19-s − 0.895·21-s + 1.35·23-s + 1/5·25-s − 0.192·27-s − 1.19·29-s − 0.692·31-s − 0.528·33-s + 0.693·35-s − 1.53·37-s + 0.429·39-s − 0.916·41-s + 0.486·43-s + 0.149·45-s − 0.614·47-s + 1.40·49-s − 0.883·51-s + 0.309·53-s + 0.409·55-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
2.781921563 |
L(21) |
≈ |
2.781921563 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p3T |
| 5 | 1−p3T |
good | 7 | 1−1408T+p7T2 |
| 11 | 1−4044T+p7T2 |
| 13 | 1+5890T+p7T2 |
| 17 | 1−31002T+p7T2 |
| 19 | 1−40300T+p7T2 |
| 23 | 1−78912T+p7T2 |
| 29 | 1+157194T+p7T2 |
| 31 | 1+3704pT+p7T2 |
| 37 | 1+471994T+p7T2 |
| 41 | 1+404310T+p7T2 |
| 43 | 1−253852T+p7T2 |
| 47 | 1+437688T+p7T2 |
| 53 | 1−334926T+p7T2 |
| 59 | 1+562596T+p7T2 |
| 61 | 1−3246662T+p7T2 |
| 67 | 1+3895148T+p7T2 |
| 71 | 1−2345160T+p7T2 |
| 73 | 1−5726954T+p7T2 |
| 79 | 1−5222008T+p7T2 |
| 83 | 1−2928132T+p7T2 |
| 89 | 1+3160230T+p7T2 |
| 97 | 1+1898686T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04348464686370767699141247176, −9.950539247164196122483685681750, −9.044649738406282416908099406162, −7.75736531757074696164805966226, −6.98606894726246529228652518213, −5.41703456680094371975914025638, −5.06717257165342080949224187379, −3.52273784841209624245421040435, −1.78096634798540549634832031793, −0.976652657342193778156975566426,
0.976652657342193778156975566426, 1.78096634798540549634832031793, 3.52273784841209624245421040435, 5.06717257165342080949224187379, 5.41703456680094371975914025638, 6.98606894726246529228652518213, 7.75736531757074696164805966226, 9.044649738406282416908099406162, 9.950539247164196122483685681750, 11.04348464686370767699141247176