Properties

Label 2-240-1.1-c7-0-27
Degree $2$
Conductor $240$
Sign $-1$
Analytic cond. $74.9724$
Root an. cond. $8.65866$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s + 125·5-s + 832·7-s + 729·9-s − 3.15e3·11-s − 7.69e3·13-s + 3.37e3·15-s + 258·17-s − 4.57e4·19-s + 2.24e4·21-s − 1.04e5·23-s + 1.56e4·25-s + 1.96e4·27-s + 3.86e4·29-s − 1.92e5·31-s − 8.52e4·33-s + 1.04e5·35-s + 4.03e5·37-s − 2.07e5·39-s + 8.60e4·41-s + 1.27e5·43-s + 9.11e4·45-s − 6.01e5·47-s − 1.31e5·49-s + 6.96e3·51-s − 1.62e6·53-s − 3.94e5·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.916·7-s + 1/3·9-s − 0.714·11-s − 0.970·13-s + 0.258·15-s + 0.0127·17-s − 1.52·19-s + 0.529·21-s − 1.79·23-s + 1/5·25-s + 0.192·27-s + 0.294·29-s − 1.15·31-s − 0.412·33-s + 0.410·35-s + 1.30·37-s − 0.560·39-s + 0.194·41-s + 0.244·43-s + 0.149·45-s − 0.844·47-s − 0.159·49-s + 0.00735·51-s − 1.50·53-s − 0.319·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(74.9724\)
Root analytic conductor: \(8.65866\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 240,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{3} T \)
5 \( 1 - p^{3} T \)
good7 \( 1 - 832 T + p^{7} T^{2} \)
11 \( 1 + 3156 T + p^{7} T^{2} \)
13 \( 1 + 7690 T + p^{7} T^{2} \)
17 \( 1 - 258 T + p^{7} T^{2} \)
19 \( 1 + 45740 T + p^{7} T^{2} \)
23 \( 1 + 104832 T + p^{7} T^{2} \)
29 \( 1 - 38646 T + p^{7} T^{2} \)
31 \( 1 + 192224 T + p^{7} T^{2} \)
37 \( 1 - 403454 T + p^{7} T^{2} \)
41 \( 1 - 86010 T + p^{7} T^{2} \)
43 \( 1 - 127348 T + p^{7} T^{2} \)
47 \( 1 + 601272 T + p^{7} T^{2} \)
53 \( 1 + 1628226 T + p^{7} T^{2} \)
59 \( 1 + 198996 T + p^{7} T^{2} \)
61 \( 1 - 1209782 T + p^{7} T^{2} \)
67 \( 1 - 699388 T + p^{7} T^{2} \)
71 \( 1 - 4939320 T + p^{7} T^{2} \)
73 \( 1 + 1275334 T + p^{7} T^{2} \)
79 \( 1 + 6559712 T + p^{7} T^{2} \)
83 \( 1 - 3108348 T + p^{7} T^{2} \)
89 \( 1 - 5542410 T + p^{7} T^{2} \)
97 \( 1 - 4513346 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30837360962139738453507454596, −9.467347034268125317110871856247, −8.265424095586554527399835703100, −7.70838416614435932154731349149, −6.34854527126367288150948080787, −5.11488013084283388447265434761, −4.13315647707977240214204607538, −2.51524909791404662657692278835, −1.78339885647917103745990206487, 0, 1.78339885647917103745990206487, 2.51524909791404662657692278835, 4.13315647707977240214204607538, 5.11488013084283388447265434761, 6.34854527126367288150948080787, 7.70838416614435932154731349149, 8.265424095586554527399835703100, 9.467347034268125317110871856247, 10.30837360962139738453507454596

Graph of the $Z$-function along the critical line