L(s) = 1 | + (46.7 + 1.97i)3-s + 125i·5-s − 710. i·7-s + (2.17e3 + 184. i)9-s + 2.11e3·11-s − 1.38e4·13-s + (−246. + 5.84e3i)15-s + 2.39e4i·17-s + 2.80e4i·19-s + (1.40e3 − 3.32e4i)21-s + 4.68e3·23-s − 1.56e4·25-s + (1.01e5 + 1.29e4i)27-s + 2.04e5i·29-s − 2.93e5i·31-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0422i)3-s + 0.447i·5-s − 0.783i·7-s + (0.996 + 0.0843i)9-s + 0.478·11-s − 1.75·13-s + (−0.0188 + 0.446i)15-s + 1.18i·17-s + 0.937i·19-s + (0.0330 − 0.782i)21-s + 0.0803·23-s − 0.199·25-s + (0.991 + 0.126i)27-s + 1.55i·29-s − 1.76i·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(0.0422−0.999i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(0.0422−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
0.0422−0.999i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), 0.0422−0.999i)
|
Particular Values
L(4) |
≈ |
2.475459951 |
L(21) |
≈ |
2.475459951 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−46.7−1.97i)T |
| 5 | 1−125iT |
good | 7 | 1+710.iT−8.23e5T2 |
| 11 | 1−2.11e3T+1.94e7T2 |
| 13 | 1+1.38e4T+6.27e7T2 |
| 17 | 1−2.39e4iT−4.10e8T2 |
| 19 | 1−2.80e4iT−8.93e8T2 |
| 23 | 1−4.68e3T+3.40e9T2 |
| 29 | 1−2.04e5iT−1.72e10T2 |
| 31 | 1+2.93e5iT−2.75e10T2 |
| 37 | 1−1.33e5T+9.49e10T2 |
| 41 | 1−6.93e5iT−1.94e11T2 |
| 43 | 1−8.24e5iT−2.71e11T2 |
| 47 | 1−1.08e6T+5.06e11T2 |
| 53 | 1+2.96e5iT−1.17e12T2 |
| 59 | 1+2.40e6T+2.48e12T2 |
| 61 | 1+1.95e6T+3.14e12T2 |
| 67 | 1+2.22e5iT−6.06e12T2 |
| 71 | 1−1.63e6T+9.09e12T2 |
| 73 | 1+4.96e4T+1.10e13T2 |
| 79 | 1−6.73e6iT−1.92e13T2 |
| 83 | 1−6.45e6T+2.71e13T2 |
| 89 | 1+5.16e6iT−4.42e13T2 |
| 97 | 1+3.73e5T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86583961246154842286015045128, −10.01551562241565250527643701013, −9.326868050498195763371628094765, −7.955144657258949205936519928085, −7.41392526688764706306006315429, −6.29124476299503315317838534783, −4.59275113837848545194184060924, −3.68633525157998530095037753849, −2.52620071081362118251234267322, −1.32630544835107594578023579005,
0.49257028280582247428447425915, 2.10502995843730768355131255957, 2.86449643246279160492718948842, 4.38276116977283812426064538822, 5.30050343878130387510897865629, 6.92661483237151027029569815301, 7.67931746579278852665426225122, 9.066192318359656985389630765166, 9.207665972381308449238227503482, 10.41013870251154974245769881294