Properties

Label 2-240-12.11-c7-0-19
Degree $2$
Conductor $240$
Sign $0.0422 - 0.999i$
Analytic cond. $74.9724$
Root an. cond. $8.65866$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (46.7 + 1.97i)3-s + 125i·5-s − 710. i·7-s + (2.17e3 + 184. i)9-s + 2.11e3·11-s − 1.38e4·13-s + (−246. + 5.84e3i)15-s + 2.39e4i·17-s + 2.80e4i·19-s + (1.40e3 − 3.32e4i)21-s + 4.68e3·23-s − 1.56e4·25-s + (1.01e5 + 1.29e4i)27-s + 2.04e5i·29-s − 2.93e5i·31-s + ⋯
L(s)  = 1  + (0.999 + 0.0422i)3-s + 0.447i·5-s − 0.783i·7-s + (0.996 + 0.0843i)9-s + 0.478·11-s − 1.75·13-s + (−0.0188 + 0.446i)15-s + 1.18i·17-s + 0.937i·19-s + (0.0330 − 0.782i)21-s + 0.0803·23-s − 0.199·25-s + (0.991 + 0.126i)27-s + 1.55i·29-s − 1.76i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0422 - 0.999i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.0422 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $0.0422 - 0.999i$
Analytic conductor: \(74.9724\)
Root analytic conductor: \(8.65866\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :7/2),\ 0.0422 - 0.999i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.475459951\)
\(L(\frac12)\) \(\approx\) \(2.475459951\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-46.7 - 1.97i)T \)
5 \( 1 - 125iT \)
good7 \( 1 + 710. iT - 8.23e5T^{2} \)
11 \( 1 - 2.11e3T + 1.94e7T^{2} \)
13 \( 1 + 1.38e4T + 6.27e7T^{2} \)
17 \( 1 - 2.39e4iT - 4.10e8T^{2} \)
19 \( 1 - 2.80e4iT - 8.93e8T^{2} \)
23 \( 1 - 4.68e3T + 3.40e9T^{2} \)
29 \( 1 - 2.04e5iT - 1.72e10T^{2} \)
31 \( 1 + 2.93e5iT - 2.75e10T^{2} \)
37 \( 1 - 1.33e5T + 9.49e10T^{2} \)
41 \( 1 - 6.93e5iT - 1.94e11T^{2} \)
43 \( 1 - 8.24e5iT - 2.71e11T^{2} \)
47 \( 1 - 1.08e6T + 5.06e11T^{2} \)
53 \( 1 + 2.96e5iT - 1.17e12T^{2} \)
59 \( 1 + 2.40e6T + 2.48e12T^{2} \)
61 \( 1 + 1.95e6T + 3.14e12T^{2} \)
67 \( 1 + 2.22e5iT - 6.06e12T^{2} \)
71 \( 1 - 1.63e6T + 9.09e12T^{2} \)
73 \( 1 + 4.96e4T + 1.10e13T^{2} \)
79 \( 1 - 6.73e6iT - 1.92e13T^{2} \)
83 \( 1 - 6.45e6T + 2.71e13T^{2} \)
89 \( 1 + 5.16e6iT - 4.42e13T^{2} \)
97 \( 1 + 3.73e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86583961246154842286015045128, −10.01551562241565250527643701013, −9.326868050498195763371628094765, −7.955144657258949205936519928085, −7.41392526688764706306006315429, −6.29124476299503315317838534783, −4.59275113837848545194184060924, −3.68633525157998530095037753849, −2.52620071081362118251234267322, −1.32630544835107594578023579005, 0.49257028280582247428447425915, 2.10502995843730768355131255957, 2.86449643246279160492718948842, 4.38276116977283812426064538822, 5.30050343878130387510897865629, 6.92661483237151027029569815301, 7.67931746579278852665426225122, 9.066192318359656985389630765166, 9.207665972381308449238227503482, 10.41013870251154974245769881294

Graph of the $Z$-function along the critical line