Properties

Label 2-2400-1.1-c1-0-21
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $19.1640$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s + 9-s + 2·13-s + 6·17-s + 4·21-s + 4·23-s + 27-s − 2·29-s − 8·31-s − 6·37-s + 2·39-s − 6·41-s − 12·43-s + 12·47-s + 9·49-s + 6·51-s + 10·53-s + 8·59-s − 10·61-s + 4·63-s + 12·67-s + 4·69-s + 8·71-s − 10·73-s + 16·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s + 1/3·9-s + 0.554·13-s + 1.45·17-s + 0.872·21-s + 0.834·23-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.986·37-s + 0.320·39-s − 0.937·41-s − 1.82·43-s + 1.75·47-s + 9/7·49-s + 0.840·51-s + 1.37·53-s + 1.04·59-s − 1.28·61-s + 0.503·63-s + 1.46·67-s + 0.481·69-s + 0.949·71-s − 1.17·73-s + 1.80·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(19.1640\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.916778265\)
\(L(\frac12)\) \(\approx\) \(2.916778265\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.705123030777718551062740746738, −8.327275882404076664812739978493, −7.50997107238151608216676165196, −6.92530805420045658384192775774, −5.52811097399805640485701497969, −5.15807146102017226607398116108, −4.01150010595379173537756771542, −3.28316059994551513635790000973, −2.01099980219901421650957341119, −1.20740065177480422433876237100, 1.20740065177480422433876237100, 2.01099980219901421650957341119, 3.28316059994551513635790000973, 4.01150010595379173537756771542, 5.15807146102017226607398116108, 5.52811097399805640485701497969, 6.92530805420045658384192775774, 7.50997107238151608216676165196, 8.327275882404076664812739978493, 8.705123030777718551062740746738

Graph of the $Z$-function along the critical line