L(s) = 1 | + 3-s + 9-s − 2·13-s − 6·17-s − 4·19-s − 8·23-s + 27-s − 2·29-s + 4·31-s − 10·37-s − 2·39-s + 2·41-s + 4·43-s − 8·47-s − 7·49-s − 6·51-s + 2·53-s − 4·57-s + 8·59-s − 2·61-s + 12·67-s − 8·69-s + 8·71-s + 14·73-s − 12·79-s + 81-s + 4·83-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s − 0.554·13-s − 1.45·17-s − 0.917·19-s − 1.66·23-s + 0.192·27-s − 0.371·29-s + 0.718·31-s − 1.64·37-s − 0.320·39-s + 0.312·41-s + 0.609·43-s − 1.16·47-s − 49-s − 0.840·51-s + 0.274·53-s − 0.529·57-s + 1.04·59-s − 0.256·61-s + 1.46·67-s − 0.963·69-s + 0.949·71-s + 1.63·73-s − 1.35·79-s + 1/9·81-s + 0.439·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 12 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.403731101485364375376192345699, −8.090705707741763680917159262620, −6.93734943901991982578238677077, −6.47967036650562281115929462317, −5.36153901167379763944515499710, −4.41269930710391273354556396845, −3.76487004494944959266400194993, −2.52766240342707528511307153079, −1.85990170159571189913185703867, 0,
1.85990170159571189913185703867, 2.52766240342707528511307153079, 3.76487004494944959266400194993, 4.41269930710391273354556396845, 5.36153901167379763944515499710, 6.47967036650562281115929462317, 6.93734943901991982578238677077, 8.090705707741763680917159262620, 8.403731101485364375376192345699