Properties

Label 2-245-1.1-c1-0-2
Degree $2$
Conductor $245$
Sign $1$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s − 0.414·3-s + 5-s + 0.585·6-s + 2.82·8-s − 2.82·9-s − 1.41·10-s − 0.171·11-s + 4.41·13-s − 0.414·15-s − 4.00·16-s + 3.24·17-s + 4.00·18-s + 6·19-s + 0.242·22-s + 7.41·23-s − 1.17·24-s + 25-s − 6.24·26-s + 2.41·27-s − 8.65·29-s + 0.585·30-s + 10.2·31-s + 0.0710·33-s − 4.58·34-s + ⋯
L(s)  = 1  − 1.00·2-s − 0.239·3-s + 0.447·5-s + 0.239·6-s + 0.999·8-s − 0.942·9-s − 0.447·10-s − 0.0517·11-s + 1.22·13-s − 0.106·15-s − 1.00·16-s + 0.786·17-s + 0.942·18-s + 1.37·19-s + 0.0517·22-s + 1.54·23-s − 0.239·24-s + 0.200·25-s − 1.22·26-s + 0.464·27-s − 1.60·29-s + 0.106·30-s + 1.83·31-s + 0.0123·33-s − 0.786·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7034737732\)
\(L(\frac12)\) \(\approx\) \(0.7034737732\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
good2 \( 1 + 1.41T + 2T^{2} \)
3 \( 1 + 0.414T + 3T^{2} \)
11 \( 1 + 0.171T + 11T^{2} \)
13 \( 1 - 4.41T + 13T^{2} \)
17 \( 1 - 3.24T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 - 7.41T + 23T^{2} \)
29 \( 1 + 8.65T + 29T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 - 2.24T + 37T^{2} \)
41 \( 1 + 6.24T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 7.24T + 47T^{2} \)
53 \( 1 - 4.24T + 53T^{2} \)
59 \( 1 + 2.24T + 59T^{2} \)
61 \( 1 + 2.82T + 61T^{2} \)
67 \( 1 + 8.24T + 67T^{2} \)
71 \( 1 + 3.17T + 71T^{2} \)
73 \( 1 + 8.48T + 73T^{2} \)
79 \( 1 - 1.48T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 8T + 89T^{2} \)
97 \( 1 - 13.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.73477395593774816396878547392, −11.00202302594167867959362115395, −10.03940226125010060606135121765, −9.154333733674727999064963391188, −8.411833973854258661558160498613, −7.37480225697226856105903711973, −6.01837265074468781325981483010, −5.00788806556701209132586036557, −3.22276589798217675804356448983, −1.16360101941472512386216658081, 1.16360101941472512386216658081, 3.22276589798217675804356448983, 5.00788806556701209132586036557, 6.01837265074468781325981483010, 7.37480225697226856105903711973, 8.411833973854258661558160498613, 9.154333733674727999064963391188, 10.03940226125010060606135121765, 11.00202302594167867959362115395, 11.73477395593774816396878547392

Graph of the $Z$-function along the critical line