L(s) = 1 | − 1.41·2-s − 0.414·3-s + 5-s + 0.585·6-s + 2.82·8-s − 2.82·9-s − 1.41·10-s − 0.171·11-s + 4.41·13-s − 0.414·15-s − 4.00·16-s + 3.24·17-s + 4.00·18-s + 6·19-s + 0.242·22-s + 7.41·23-s − 1.17·24-s + 25-s − 6.24·26-s + 2.41·27-s − 8.65·29-s + 0.585·30-s + 10.2·31-s + 0.0710·33-s − 4.58·34-s + ⋯ |
L(s) = 1 | − 1.00·2-s − 0.239·3-s + 0.447·5-s + 0.239·6-s + 0.999·8-s − 0.942·9-s − 0.447·10-s − 0.0517·11-s + 1.22·13-s − 0.106·15-s − 1.00·16-s + 0.786·17-s + 0.942·18-s + 1.37·19-s + 0.0517·22-s + 1.54·23-s − 0.239·24-s + 0.200·25-s − 1.22·26-s + 0.464·27-s − 1.60·29-s + 0.106·30-s + 1.83·31-s + 0.0123·33-s − 0.786·34-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(245s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7034737732 |
L(21) |
≈ |
0.7034737732 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 7 | 1 |
good | 2 | 1+1.41T+2T2 |
| 3 | 1+0.414T+3T2 |
| 11 | 1+0.171T+11T2 |
| 13 | 1−4.41T+13T2 |
| 17 | 1−3.24T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1−7.41T+23T2 |
| 29 | 1+8.65T+29T2 |
| 31 | 1−10.2T+31T2 |
| 37 | 1−2.24T+37T2 |
| 41 | 1+6.24T+41T2 |
| 43 | 1−2T+43T2 |
| 47 | 1+7.24T+47T2 |
| 53 | 1−4.24T+53T2 |
| 59 | 1+2.24T+59T2 |
| 61 | 1+2.82T+61T2 |
| 67 | 1+8.24T+67T2 |
| 71 | 1+3.17T+71T2 |
| 73 | 1+8.48T+73T2 |
| 79 | 1−1.48T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+8T+89T2 |
| 97 | 1−13.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.73477395593774816396878547392, −11.00202302594167867959362115395, −10.03940226125010060606135121765, −9.154333733674727999064963391188, −8.411833973854258661558160498613, −7.37480225697226856105903711973, −6.01837265074468781325981483010, −5.00788806556701209132586036557, −3.22276589798217675804356448983, −1.16360101941472512386216658081,
1.16360101941472512386216658081, 3.22276589798217675804356448983, 5.00788806556701209132586036557, 6.01837265074468781325981483010, 7.37480225697226856105903711973, 8.411833973854258661558160498613, 9.154333733674727999064963391188, 10.03940226125010060606135121765, 11.00202302594167867959362115395, 11.73477395593774816396878547392